Interpolation between Sum and Intersection of Banach Spaces

LECH MALIGRANDA

Institute of Mathematics, Polish Academy of Sciences, Mielżyńskiego 27/29, 61-725 Poznań, Poland

Communicated by P. L. Butzer

Received May 5, 1984; revised September 15, 1984

We study intermediate Banach spaces A which are or are not interpolation spaces between $A_0 + A_1$ and $A_0 \cap A_1$. © 1986 Academic Press, Inc.

1. INTRODUCTION

We recall some notations from interpolation theory.

A pair $\overline{A} = (A_0, A_1)$ of Banach spaces is called a *Banach couple* if A_0 and A_1 are both continuously imbedded in some Hausdorff topological vector space V.

For a Banach couple $\overline{A} = (A_0, A_1)$ we can form the sum $\Sigma(\overline{A}) = A_0 + A_1$ and the *intersection* $\Delta(\overline{A}) = A_0 \cap A_1$. They are both Banach spaces, in the natural norms $||a||_{\Sigma(\overline{A})} = K(1, a; \overline{A})$ and $||a||_{\Delta(\overline{A})} = \max(||a||_{A_0}, ||a||_{A_1})$, respectively (whenever possible we suppress the "unnecessary" \overline{A} , writing Σ and Δ), where

$$K(t, a) \equiv K(t, a; \bar{A}) = \inf\{\|a_0\|_{A_0} + t \|a_1\|_{A_1} : a_0 \in A_0, a_1 \in A_1, a = a_0 + a_1\}$$
(1)

for any positive number t.

A Banach space A is called an *intermediate space* between A_0 and A_1 (or with respect to \overline{A}) if $\Delta(\overline{A}) \subset A \subset \Sigma(\overline{A})$ with continuous inclusions.

We denote by $L(\overline{A})$ the Banach space of all linear operators $T: \Sigma(\overline{A}) \to \Sigma(\overline{A})$ such that the restriction of T to the space A_i is a bounded operator from A_i into A_i , i=0, 1, with the norm

$$||T||_{L(\overline{A})} = \max(||T||_{A_0 \to A_0}, ||T||_{A_1 \to A_1}).$$

An intermediate space A is called an *interpolation space* between A_0 and A_1 (or with respect to \overline{A}) if in addition every linear operator from $L(\overline{A})$

maps A into itself. The set of all interpolation spaces between A_0 and A_1 will be denoted by $I(A_0, A_1)$.

The closed graph theorem implies that a mapping $T: A \rightarrow A$ is bounded linear, and that there exists a positive constant C such that

$$\|T\|_{A \to A} \leqslant C \|T\|_{L(\bar{A})} \tag{2}$$

for any $T \in L(\overline{A})$ (see [6, p. 20]).

Clearly, $A_0 + A_1$ and $A_0 \cap A_1$ are interpolation spaces between A_0 and A_1 , and the constant C in (2) is equal to 1.

The plan of the paper is as follows:

In Section 2 we give a short proof of the Aronszajn-Gagliardo theorem, giving necessary and sufficient conditions for a Banach couple of spaces A_0 and A_1 to be interpolation spaces between $A_0 + A_1$ and $A_0 \cap A_1$. The method of proof is similar to that of Aronszajn and Gagliardo. The main difference lies in the consequent use of the K-functional (briefly proved Proposition 1 instead of Lemma 10.X of Aronszajn and Gagliardo).

Applications of the real method and the Caldéron-Lozanovskii construction to interpolation of the sum and the intersection are given in Section 3 and 4.

In Section 5, the above results are applied to the important class of symmetric function spaces, in particular to Lebesgue, Lorentz. and Orlicz spaces. For example, $L_p(0, \infty)$ is an interpolation space between $L_1(0, \infty) + L_{\infty}(0, \infty)$ and $L_1(0, \infty) \cap L_{\infty}(0, \infty)$ if and only if p = 2.

Conventions. Two Banach spaces A and B are considered as equal (A = B) whenever A = B as sets and their norms are equivalent. The equivalence $a \approx b$ means that $c_0 a \leqslant b \leqslant c_1 a$ for some positive constants c_0 and c_1 .

2. A SHORT PROOF OF ARONSZAJN-GAGLIARDO THEOREM

For an intermediate space A with respect to \overline{A} we denote by A^0 the closure of $\Delta(\overline{A})$ in A, and by \overline{A}^{Σ} the closure of A in $\Sigma(\overline{A})$. The following result is well known (see [1, Theorem 7.V]): if $A \in I(A_0, A_1)$ then A must satisfy one of the four conditions

$$A = A_0 + A_1, \qquad A_0 \subset A \subset \overline{A}_0^{\Sigma} = A_0 + A_1^0,$$
$$A_1 \subset A \subset \overline{A}_1^{\Sigma} = A_0^0 + A_1, \qquad A_0 \cap A_1 \subset A \subset \overline{A_0 \cap A}_1^{\Sigma}.$$

In particular, if $A_0 \cap A_1$ is closed in A_0 and A_1 then $I(A_0, A_1) = \{A_0 + A_1, A_0, A_1, A_0 \cap A_1\}$ and such a pair $\overline{A} = (A_0, A_1)$ is called *trivial*. The key result to our discussion in this section is the following:

LECH MALIGRANDA

PROPOSITION 1. Let A be an intermediate space between A_0 and A_1 , and let $a \in \Sigma$. Suppose that there exists a sequence $\{a_n\} \subset \Delta$ such that

$$||a_n||_A = 1, ||a_n||_{A_1} \to 0, \text{ and } ||a_n||_A \ge c \text{ for some } c > 0. (3)$$

Then there exists a sequence $\{T_n\}$ of operators of rank 1 such that

$$\sup_{n} \|T_{n}\|_{L(\bar{A})} \leq 1 \qquad and \qquad \limsup_{n \to \infty} \|T_{n}a\|_{A} \geq c \lim_{t \to \infty} K(t, a; \bar{A}).$$
(4)

Proof. Let $t_n^{-1} = ||a_n||_{A_1}$. Consider the linear operators $T_n x = a_n f_n(x)$, where f_n are bounded linear functionals on Σ with $f_n(a) = K(t_n, a)$ and $|f_n(x)| \leq K(t_n, x)$. The existence of such functionals follows from the Hahn-Banach theorem. If $x \in A_i$, by (3)

$$\|T_n x\|_{A_i} = \|a_n\|_{A_i} |f_n(x)| \le \|a_n\|_{A_i} K(t_n, x) \le \|a_n\|_{A_i} t_n^i \|x\|_{A_i} = \|x\|_{A_i}$$

i = 0, 1. Hence, by (3)

$$\lim_{n \to \infty} \sup_{x \to \infty} \|T_n a\|_A = \limsup_{n \to \infty} \|a_n\|_A \|f_n(a)\| = \limsup_{n \to \infty} \|a_n\|_A K(t_n, a)$$
$$\ge c \limsup_{n \to \infty} K(t_n, a) = c \lim_{t \to \infty} K(t, a)$$

and the proof is complete.

Note that if Δ is a non-closed subspace in A_1 and $\Delta \subset A \subset A_0$, then condition (3) holds.

PROPOSITION 2. If $A_0 \neq \Sigma$, then the set $\tilde{A}_0 = \{a \in \Sigma : \lim_{t \to \infty} K(t, a; \overline{A}) < \infty\}$ is a first category subset of Σ .

Proof. First we shall prove that

$$A_r = \overline{S_0(r)}^{\Sigma}$$
⁽⁵⁾

for all r > 0, where $A_r = \{a \in \Sigma : \sup_{t > 0} K(t, a) \leq r\}$ and $S_0(r) = \{a \in A_0 : ||a||_{A_0} \leq r\}.$

If $a \in \overline{S_0(r)}^{\Sigma}$ then there exist $a_n \in A_0$ such that $\sup ||a_n||_{A_0} \leq r$ and $\lim_{n \to \infty} ||a - a_n||_{\Sigma} = 0$. We have $K(t, a) = \lim_{n \to \infty} K(t, a_n) \leq ||a_n||_{A_0} \leq r$ for all t > 0. Hence $a \in A_r$. Let $a \in A_r$ and $\varepsilon > 0$. We can find a decomposition $a = a_{0n} + a_{1n}$ such that $a_{0n} \in A_0$, $a_{1n} \in A_1$ and

$$\|a_{0n}\|_{A_0} + n \|a_{1n}\|_{A_1} \leq K(n, a) + \varepsilon \leq r + \varepsilon.$$

It follows that

$$\|a - a_{0n}\|_{\mathcal{E}} \leq \|a_{1n}\|_{A_1} \leq \frac{r+\varepsilon}{n} \to 0, \qquad n \to \infty$$
$$\|a_{0n}\|_{A_0} \leq K(n, a) + \varepsilon \leq r + \varepsilon.$$

Thus, $a \in \bigcap_{\varepsilon > 0} \overline{S_0(r+\varepsilon)}^{\Sigma} = \overline{S_0(r)}^{\Sigma}$. Since \tilde{A}_0 with the norm $||a||_{\tilde{A}_0} = \lim_{r \to \infty} K(t, a)$ (this is the Minkowski functional of the set $\overline{S_0(1)}^{\Sigma}$) is a Banach space and $\tilde{A}_0 = \bigcup_{n=1}^{\infty} \overline{S_0(n)}^{\Sigma}$ and $\overline{S_0(n)}^{\Sigma}$ is a nowhere dense set in Σ , we get our conclusion.

The final result of this section is the Aronszajn-Gagliardo theorem.

THEOREM 1. Suppose that $A_0 \neq \Delta$ and $A_1 \neq \Delta$ (i.e., $A_0 \neq \Delta$ and $A_0 \neq \Sigma$).

(a) If Δ is a non-closed subspace in A_i , then $A_{1-i} \notin I(\Sigma, \Delta)$ (i=0, 1).

(b) If Δ is closed in A_0 but not in A_1 , then $A_1 \in I(\Sigma, \Delta)$ if and only if Δ is dense in A_1

(c) If Δ is closed in both A_0 and A_1 , then $A_0, A_1 \notin I(\Sigma, \Delta)$.

Proof. (a) Suppose that $A_{1-i} \in I(\Sigma, \Delta)$. On account of the assumption there exists a sequence $\{a_n\} \subset \Delta$ such that $||a_n||_{\Delta} = 1$, $||a_n||_{A_i} \to 0$. It follows that $||a_n||_{\Delta} = 1$, $||a_n||_{\Sigma} \to 0$, and $||a_n||_{A_{1-i}} = 1$. Applying Proposition 1 to the couple (Δ, Σ) and the space $A = A_{1-i}$, we obtain that for any $a \in A_{1-i}$

$$c_1 \|a\|_{A_{1-i}} \ge \lim_{t \to \infty} K(t, a; \Delta, \Sigma).$$

Hence $A_{1-i} \subset \tilde{A} = \tilde{A}_0 \cap \tilde{A}_1$; this means that $A_{1-i} \subset \tilde{A}_i$. Since $A_i \subset \tilde{A}_i$ we have $\Sigma \subset \tilde{A}_i$ in contradiction to Proposition 2.

(b) Since $\overline{A}_1^{\Sigma} = A_0^0 + A_1 = \Delta + A_1 = A_1$, it follows that A_1 is a closed subspace of Σ . The closed subspaces of Σ from $I(\Sigma, \Delta)$ are only Σ and $\overline{\Delta}^{\Sigma} = A_1^0$. Hence $A_1 \in I(\Sigma, \Delta)$ if and only if Δ is dense in A_1 .

(c) In this case $I(\Sigma, \Delta) = \{\Sigma, \Delta\}$.

3. THE K-METHOD FOR THE SUM AND THE INTERSECTION

Let \mathscr{P} denote the set of all positive functions φ on $R_+ = (0, \infty)$ such that both $\varphi(t)$ and $t\varphi(1/t)$ are non-decreasing, i.e., $\varphi(s) \leq \max(1, s/t) \varphi(t)$ for all $s, t \in R_+$. \mathscr{P} contains all concave functions on R_+ . On \mathscr{P} we define the involution by $\varphi^*(t) = t\varphi(1/t)$. A function φ in \mathscr{P} is said to belong to \mathscr{P}^{+-} if $\min(1, 1/t) s_{\varphi}(t) \to 0$ as $t \to 0$, ∞ , where $s_{\varphi}(t) = \sup_{u>0}(\varphi(ut)/\varphi(u))$.

Let $\varphi \in \mathscr{P}$ and $p = \infty$ or $\varphi \in \mathscr{P}^{+-}$ and $1 \leq p < \infty$. We then define the

real interpolation space $\bar{A}_{\varphi,p} = (A_0, A_1)_{\varphi,p}$ as the space of all $a \in \Sigma(\bar{A})$ such that

$$\|a\|_{\varphi,p} = \left(\int_0^\infty \left(\frac{K(t,a;\overline{A})}{\varphi(t)}\right)^p \frac{dt}{t}\right)^{1/p}, \qquad 1 \le p < \infty$$

$$= \sup_{0 < t < \infty} \frac{K(t,a;\overline{A})}{\varphi(t)}, \qquad p = \infty$$
(6)

is finite; it is a Banach space. If $\varphi(t) = t^{\Theta}(0 \le \Theta \le 1)$ we write, in short, $\overline{A}_{\theta,p}$ and $\| \|_{\theta,p}$. See [5, 2] for details. If $\varphi_0, \varphi_1 \in \mathcal{P}$ and $p = \infty$ or if $\varphi_0, \varphi_1 \in \mathcal{P}^{+-}$ and $1 \le p < \infty$, then

$$\overline{A}_{\min(\varphi_0,\varphi_1),p} = \overline{A}_{\varphi_0,p} \cap \overline{A}_{\varphi_1,p} \quad \text{and} \quad \overline{A}_{\max(\varphi_0,\varphi_1),p} = \overline{A}_{\varphi_0,p} + \overline{A}_{\varphi_1,p} \quad (7)$$

(cf.[3, p. 169]).

PROPOSITION 3. (a) If $\phi(t)/\sqrt{t}$ is a non-increasing function then

$$(\Sigma(\bar{A}), \Delta(\bar{A}))_{\varphi, p} = \bar{A}_{\varphi, p} + \bar{A}_{\varphi^*, p}$$

(b) If $\varphi(t)/\sqrt{t}$ is a non-decreasing function then

$$(\Sigma(\overline{A}), \Delta(\overline{A}))_{\varphi,p} = \overline{A}_{\varphi,p} \cap \overline{A}_{\varphi^*,p}$$

(c) If
$$\varphi = \varphi^*$$
 then $(\Sigma(\overline{A}), \Delta(\overline{A}))_{\varphi,p} = \overline{A}_{\varphi,p}$.

Proof. We have $K(t, a; \Sigma, \Delta) = ||a||_{\Sigma}$ if $t \ge 1$, and $K(t, a; \Sigma, \Delta) \approx$ $K(t, a; \overline{A}) + tK(t^{-1}, a; \overline{A})$ if 0 < t < 1 (see [10, Theorem 3]).

Assume that $1 \le p < \infty$ and $\varphi(t)/\sqrt{t}$ is non-increasing. Then

$$\begin{split} \|a\|_{\varphi,p}^{p} &\approx \int_{0}^{1} \left(\frac{K(t,a;\overline{A}) + tK(t^{-1},a;\overline{A})}{\varphi(t)}\right)^{p} \frac{dt}{t} + \|a\|_{\Sigma} \int_{1}^{\infty} \frac{1}{\varphi(t)^{p}} \frac{dt}{t} \\ &\approx \int_{0}^{1} \left(\frac{K(t,a;\overline{A})}{\varphi(t)}\right)^{p} \frac{dt}{t} + \int_{1}^{\infty} \left(\frac{K(t,a;\overline{A})}{t\varphi(1/t)}\right)^{p} \frac{dt}{t} + \|a\|_{\Sigma} C_{\varphi} \\ &\approx \int_{0}^{1} \left(\frac{K(t,a;\overline{A})}{\max(\varphi(t),\varphi^{*}(t))}\right)^{p} \frac{dt}{t} \\ &+ \int_{1}^{\infty} \left(\frac{K(t,a;\overline{A})}{\max(\varphi(t),\varphi^{*}(t))}\right)^{p} \frac{dt}{t} + C_{\varphi} \|a\|_{\Sigma} \\ &\approx \|a\|_{\max(\varphi,\varphi^{*}),p}. \end{split}$$

Applying (7) we have

$$(\Sigma, \varDelta)_{\varphi, p} = \bar{A}_{\max(\varphi, \varphi^*), p} = \bar{A}_{\varphi, p} + \bar{A}_{\varphi^*, p}.$$

The proofs for the remaining cases are analogous to the above and therefore omitted.

COROLLARY 1 (cf. [10]).

$$\begin{aligned} (\varSigma(\bar{A}), \varDelta(\bar{A}))_{\Theta, p} &= \bar{A}_{\Theta, p} + \bar{A}_{1-\Theta, p}, \qquad 0 \leqslant \Theta \leqslant \frac{1}{2} \\ &= \bar{A}_{\Theta, p} \cap \bar{A}_{1-\Theta, p}, \qquad \frac{1}{2} \leqslant \Theta \leqslant 1. \end{aligned}$$

THEOREM 2. If $\varphi(t)/\sqrt{t}$ is a monotone function on R_+ or $\varphi = \varphi^*$, then $\overline{A}_{\varphi,p} + \overline{A}_{\varphi^*,p}$ and $\overline{A}_{\varphi,p} \cap \overline{A}_{\varphi^*,p}$ are interpolation spaces between $\Sigma(\overline{A})$ and $\Delta(\overline{A})$.

Proof. It is an immediate consequence of Proposition 3, of the equality $(\Sigma, \Delta)_{\varphi,p} = (\Delta, \Sigma)_{\varphi^*,p}$, and of the definition of the real interpolation method.

PROBLEM 1. Let $0 < \Theta < 1$ and $1 \le p$, $q \le \infty$. Under which conditions on Θ , p and q, $\overline{A}_{\Theta,p} + \overline{A}_{1-\Theta,q}$ and $\overline{A}_{\Theta,p} \cap \overline{A}_{1-\Theta,q}$ are interpolation spaces between $\Sigma(\overline{A})$ and $\Delta(\overline{A})$?

Theorem 2 gives an affirmative answer for p = q and any Θ .

4. CALDERÓN–LOZANOVSKIľ CONSTRUCTION FOR THE SUM AND THE INTERSECTION

Let (Ω, Σ, μ) be a complete σ -finite measure space and let us denote by $L^0 = L^0(\Omega, \Sigma, \mu)$ the space of all equivalence classes of μ -measurable real valued functions, equipped with the topology of convergence in measure on μ -finite sets. We will say tha Banach space X is a *Banach function space* (on (Ω, Σ, μ)) if X is a Banach subspace of L^0 satisfying the property that if $x \in X$ and $y \in L^0$ are such that $|y(t)| \leq |x(t)|$, μ -a.e. on Ω , then $y \in X$ and $||y||_X \leq ||x||_X$. Note that if X_0 and X_1 are any two Banach function spaces (on (Ω, Σ, μ)) then $\overline{X} = (X_0, X_1)$ forms a Banach couple.

Let $\overline{X} = (X_0, X_1)$ be a couple of Banach function spaces and let $\varphi \in \mathscr{P}$. We will consider φ as a function on $R_+ \times R_+$ putting $\varphi(s, t) = s\varphi(t/s)$. We denote by $\varphi(\overline{X}) = \varphi(X_0, X_1)$ the *Calderón–Lozanovski*î space of all $x \in L^3$ such that for some $x_i \in X_i$, $||x_i||_{X_i} \leq 1$, i = 0, 1, and for some $\lambda > \infty$ holds $|x| \leq \lambda \varphi(|x_0|, |x_1|) \mu$ -a.e. We put $||x||_{\varphi(\overline{X})} = \inf \lambda$.

Note that $\varphi(\bar{X})$ is a Banach function space (with equivalent norm) as well as an intermediate space with respect to \bar{X} . If in particular we take $\varphi(t) = t^{\Theta}, 0 < \Theta < 1$, we obtain, in this way, the spaces $X_0^{1-\Theta} X_1^{\Theta}$ introduced by Calderón [4]. The properties of $\varphi(\bar{X})$ have been studied in detail by

Lozanovskii [8]. Ovčinnikov in [11] showed that if $\varphi(\bar{X}) = \varphi(\bar{X})''$ then $\varphi(\bar{X})$ is an interpolation space with respect to \bar{X} . Analogically we define $\varphi^*(\bar{X}) = \varphi^*(X_0, X_1)$, where $\varphi^*(s, t) = s\varphi^*(t/s) = t\varphi(s/t)$ and $\varphi \in \mathscr{P}$.

PROPOSITION 4. (a) If $\varphi(t)/\sqrt{t}$ is a non-increasing function then $\varphi(\Sigma(\bar{X}), \Delta(\bar{X})) = \varphi(\bar{X}) + \varphi^*(\bar{X})$.

(b) If $\varphi(t)/\sqrt{t}$ is a non-decreasing function then $\varphi(\Sigma(\bar{X}), \Delta(\bar{X})) = \varphi(\bar{X}) \cap \varphi^*(\bar{X}).$

(c) If $\varphi = \varphi^*$ then $\varphi(\Sigma(\overline{X}), \Delta(\overline{X})) = \varphi(\overline{X})$.

Proof. First, we note that if $x_i \in X_i$, i = 0, 1, then $\min(|x_0|, |x_1|) \in \Delta(\overline{X})$ and $\max(|x_0|, |x_1|) \in \Sigma(\overline{X})$. Moreover, $\|\min(|x_0|, |x_1|)\|_{\mathcal{A}} \leq \max(\|x_0\|_{X_0}, \|x_1\|_{X_1})$ and $\|\max(|x_0|, |x_1|)_1\|_{\mathcal{L}} \leq \|x_0\|_{X_0} + \|x_1\|_{X_1}$. Let us denote $X_{\varphi} = \varphi(\Sigma(\overline{X}), \mathcal{A}(\overline{X}))$. Let us first show that $\overline{\varphi}(\overline{X}) \cap \varphi^*(\overline{X}) \subset X_{\varphi}$: Let $|x| \leq \varphi(|y_0|, |y_1|)$ and $|x| \leq \varphi^*(|z_0|, |z_1|) = \varphi(|z_1|, |z_0|)$ where $\|y_i\|_{X_i} \leq 1$, $\|z_i\|_{X_i} \leq 1$, i = 0, 1. Then

$$|x| \leq \min\{\varphi(|y_0|, |y_1|), \varphi(|z_1|, |z_0|)\}$$

$$\leq \min\{\varphi(\max(|y_0|, |z_1|), |y_1|), \varphi(\max(|y_0|, |z_1|)), |z_0|)\}$$

$$= \varphi(\max(|y_0|, |z_1|), \min(|y_1|, |z_0|)).$$

Hence $||x||_{X_{\varphi}} \leq 2 \max(||x||_{\varphi(\bar{X})}, ||x||_{\varphi^*(\bar{X})})$. Second, if $\varphi(t)/\sqrt{t}$ is nondecreasing, then $X_{\varphi} \subset \varphi(\bar{X}) \cap \varphi^*(\bar{X})$. Indeed, since $\varphi(t)/\sqrt{t}$ is nondecreasing, we have $\varphi(s, t) \leq \varphi(t, \max(s, t))$ for all $s, t \in R_+$. For every $x \in X_{\varphi}$, there exist $x_i \in X_i$, $y \in \Delta(\bar{X})$ such that $|x| \leq \varphi(|x_0 + x_1|, |y|)$. Then

$$|x| \le \varphi(|x_0|, |y|) + \varphi(|x_1|, |y|)$$

$$\le \varphi(\max\{|x_0|, |y|\}, |y|) + \varphi(|y|, \max\{|x_1|, |y|\})$$

and

$$|x| \leq \varphi(|y|, \max\{|x_0|, |y|\}) + \varphi(\max\{|x_1|, |y|\}, |y|)$$

From the first inequality it follows that $x \in \varphi(\overline{X})$ and from the second $x \in \varphi^*(\overline{X})$. Third,

$$X_{\varphi} \subset \varphi(\bar{X}) + \varphi^{\ast}(\bar{X}).$$

This follows directly from the inequality

$$\varphi(|x_0 + x_1|, |y|) \le \varphi(|x_0|, |y|) + \varphi(|x_1|, |y|).$$

Fourth, if $\varphi(t)/\sqrt{t}$ is non-increasing, then $\varphi(\bar{X}) + \varphi^*(\bar{X}) \subset X_{\varphi}$. In fact, since $\varphi(t)/\sqrt{t}$ is non-increasing, it follows that $\varphi(s, t) \leq \varphi(\max\{s, t\}, \xi)$.

 $\min\{s, t\}$) for all $s, t \in \mathbb{R}_+$. Let $x = x_0 + x_1$, where $x_0 \in \varphi(\overline{X})$ and $x_1 \in \varphi^*(\overline{X})$. There exist $y_0, z_0 \in X_0$ and $y_1, z_1 \in X_1$ such that $|x_0| \leq \varphi(|y_0|, |y_1|), |x_1| \leq \varphi^*(|z_0|, |z_1|) = \varphi(|z_1|, |z_0|)$. Then

$$|x| \leq |x_0| + |x_1| \leq (|y_0|, |y_1|) + \phi(|z_1|, |z_0|)$$

$$\leq \phi(\max\{|y_0|, |y_1|\}, \min\{|y_0|, |y_1|\})$$

$$+ \phi(\max\{|z_0|, |z_1|\}, \min\{|z_0|, |z_1)\})$$

and we conclude that $x \in X_{\varphi}$. Part (c) can be proved in a similar way. Thus our proposition is proved.

COROLLARY 2 (Semenov-Šneiberg; see [13, Theorem 3]).

$$\begin{split} (X_0+X_1)^{1-\varTheta}(X_0\cap X_1)^{\varTheta} &= X_0^{1-\varTheta}X_1^{\varTheta}+X_0^{\circlearrowright}X_1^{1-\varTheta}, \qquad 0\leqslant \varTheta\leqslant \frac{1}{2}\\ &= X_0^{1-\varTheta}X_1^{\varTheta}\cap X_0^{\circlearrowright}X_1^{1-\varTheta}, \qquad \frac{1}{2}\leqslant \varTheta\leqslant 1. \end{split}$$

From Ovčinnikov's interpolation theorem and Proposition 4 we get:

THEOREM 3. Let $\varphi(\Sigma, \Delta) = \varphi(\Sigma, \Delta)''$. If $\varphi(t)/\sqrt{t}$ is a monotone function on R_+ or $\varphi = \varphi^*$, then $\varphi(\overline{X}) + \varphi^*(\overline{X})$ and $\varphi(\overline{X}) \cap \varphi^*(\overline{X})$ are interpolation spaces between $\Sigma(\overline{X})$ and $\Delta(\overline{X})$.

Corollary 2 and Theorem 3 suggest the following problems:

PROBLEM 2. Does the result of type of Corollary 2 hold for the complex interpolation method and any Banach spaces?

PROBLEM 3. Is the assumption $\varphi(\Sigma, \Delta) = \varphi(\Sigma, \Delta)''$ necessary in Theorem 3?

5. Concrete Examples

Let $R_+ = (0, \infty)$ be equipped with Lebesgue measure. A Banach function space $E = E(0, \infty)$ is said to be a symmetric space (on R_+) if $x \in E$ and $y \in L^0$ and |y| is equimeasurable with |x|, then $y \in E$ and $||y||_E = ||x||_E$.

Any non-trivial symmetric space E is intermediate (not necessarily interpolation) between L_1 and L_{∞} . The fundamental function $\varphi = \varphi_E$ of a symmetric space E on $(0, \infty)$ is defined for t > 0 as $\varphi_E(t) = \|\mathbf{1}_{(0,t)}\|_E$, where $\mathbf{1}_{(0,t)}$ is the characteristic function of the interval (0, t).

The sum $\Sigma(\overline{E})$ and the intersection $\Delta(\overline{E})$ of two symmetric spaces E_0, E_1 are also symmetric spaces, and

$$\varphi_{\Sigma(\overline{E})} = \min(\varphi_0, \varphi_1), \qquad \varphi_{\Delta(\overline{E})} = \max(\varphi_0, \varphi_1). \tag{8}$$

If $L_1 \cap L_\infty$ is dense in a symmetric space *E*, then *E* is *minimal*, i.e., *E* does not contain any non-trivial closed symmetric subspace. If E = E'', then *E* is a *maximal* symmetric space, i.e., *E* is not a proper closed subspace of a some symmetric space. Comprehensive information about symmetric spaces can be found in books [6, 7].

Let E_0 , E_1 , and E be symmetric spaces on $(0, \infty)$ with the fundamental functions φ_0 , φ_1 , and φ , respectively. Put

$$\varphi_{01}(t) = \varphi_0(t) / \varphi_1(t).$$

We first describe a necessary condition for the interpolation of symmetric spaces. For a more general result, see [9].

Consider the family of linear operators $\{T_{s,t}\}$ from E into E defined by

$$T_{s,t}x(u) = \left(s^{-1}\int_0^s x(v) \, dv\right) \mathbf{1}_{(0,t)}(u) \qquad (s, t > 0).$$

Then

$$\|T_{s,t}x\|_{E} = \left|s^{-1}\int_{0}^{s} x(v) \, dv\right| \|1_{(0,t)}\|_{E}$$

= $s^{-1} \left|\int_{0}^{\infty} x(v) \, 1_{(0,s)}(v) \, dv\right| \varphi(t)$
 $\leq s^{-1} \|x\|_{E} \|1_{(0,s)}\|_{E}, \varphi(t)$
= $\frac{\varphi(t)}{\varphi(s)} \|x\|_{E}$

with equality for $x = 1_{(0,s)}$. Hence, $||T_{s,t}||_{E \to E} = \varphi(t)/\varphi(s)$. From the above and (2) we have a necessary condition for interpolation of symmetric spaces. If E is an interpolation space between E_0 and E_1 then there exists a positive constant C such that the following inequality

$$\frac{\varphi(t)}{\varphi(s)} \leq C \max\left\{\frac{\varphi_0(t)}{\varphi_0(s)}, \frac{\varphi_1(t)}{\varphi_1(s)}\right\} \qquad \forall s, t > 0.$$
(9)

holds.

THEOREM 4. Let $E_0 \neq E_0 \cap E_1$ and $E_1 \neq E_0 \cap E_1$. If both E_0 and E_1 are separable or $E_0 = E_0''$ and $E_1 = E_1''$ or $\varphi_{01}(R_+) = R_+$, then E_0 and E_1 are not interpolation spaces between $E_0 + E_1$ and $E_0 \cap E_1$.

Proof. (1°) If both E_0 and E_1 are separable, then $E_0 \cap E_1$ is nonclosed in E_0 and E_1 . Hence, by Theorem 1(a) we have E_0 , $E_1 \notin I(\Sigma, \Delta)$. (2°) If $E_i = E''_i$, i = 0, 1, then both E_0 and E_1 are non-closed in $E_0 + E_1$. Hence $E_0 \cap E_1$ is non-closed in E_0 and E_1 . Theorem 1(a) implies that $E_0, E_1 \notin I(\Sigma, \Delta)$.

(3[°]) Assume that $E_0 \in I(\Sigma, \Delta)$. Since equality (8) holds if follows from (9) that

$$1 \leq C \max\left\{\frac{\min(1, \varphi_{10}(t))}{\min(1, \varphi_{10}(s))}, \frac{\max(1, \varphi_{10}(t))}{\max(1, \varphi_{10}(s))}\right\}$$

for all s, t > 0. Taking s_n and t_n such that $\varphi_{10}(s_n) \to \infty$ and $\varphi_{10}(t_n) \to 0$ as $n \to \infty$ we thus have a contradiction. The proof for E_1 is similar.

Now, we solve a question posed by E. M. Semenov showing that there exists a pair of symmetric spaces (E_0, E_1) on $(0, \infty)$ such that $E_0 \neq E_0 \cap E_1$, $E_1 \neq E_0 \cap E_1$, and E_1 is an interpolation space between $E_0 + E_1$ and $E_0 \cap E_1$.

EXAMPLE 1. Let both E_2 and E_3 be non-separable symmetric spaces on $(0, \infty)$, for example: non-separable Orlicz spaces L_M and L_N or non-separable Orlicz and Marcinkiewicz spaces L_M and $M(\varphi)$, respectively. We denote by E_i^0 (i = 2, 3) either the closure of $L_1 \cap L_\infty$ in E_i or a subspace of E_i with absolutely continuous norm. Suppose that $E_2^0 \cap E_3^0$ is not equal to $\{0\}$ or E_2^0 , or $E_2 \cap E_3^0$. Put $E_0 = E_2 \cap E_3^0$, $E_1 = E_2^0$. Then $E_0 \cap E_1 = E_2^0 \cap E_3^0$ is closed in E_0 and it is dense in E_1 . By Theorem 1(b) we have that $E_1 \in I(E_0 + E_1, E_0 \cap E_1)$.

Let us finally give some examples of the scope of our results. Note that Theorems 2 and 3 actually yield:

EXAMPLE 2. If $1 \le p$, $q \le \infty$ and 1/p + 1/p' = 1, then $L_{pq}(0, \infty) + L_{p'q}(0, \infty)$, $L_{pq}(0, \infty) \cap L_{p'q}(0, \infty)$ and $L_p(0, \infty) + L_{p'}(0, \infty)$, $L_p(0, \infty) \cap L_p(0, \infty)$ are interpolation spaces between $L_1(0, \infty) + L_{\infty}(0, \infty)$ and $L_1(0, \infty) \cap L_{\infty}(0, \infty)$.

From Theorem 3 and (9) we get the following consequence.

EXAMPLE 3. Let $1 \le p_0 \le p$, $q \le p_1 \le \infty$. The following conditions are equivalent:

(i) $L_p(0,\infty) + L_q(0,\infty) \in I(L_{p_0}(0,\infty) + L_{p_1}(0,\infty) L_{p_0}(0,\infty) \cap L_{p_1}(0,\infty)),$

(ii) $L_p(0,\infty) \cap L_q(0,\infty) \in I(L_{p_0}(0,\infty) + L_{p_1}(0,\infty), L_{p_0}(0,\infty) \cap L_{p_1}(0,\infty)),$

(iii) $1/p + 1/q = 1/p_0 + 1/p_1$.

LECH MALIGRANDA

Proof. Implication (i) or (ii) \Rightarrow (iii) follows from (9). Now we will show the implication (iii) \Rightarrow (i) and (ii).

Define Θ by $1/p = (1 - \Theta)/p_0 + \Theta/p_1$. Then $1/q = \Theta/p_0 + (1 - \Theta)/p_1$. Since $L_{p_0}^{1-\Theta} L_{p_1}^{\Theta} = L_p$ and $L_{p_0}^{\Theta} L_{p_1}^{1-\Theta} = L_q$, by Theorem 3 the implication

holds.

In particular, $L_p(0,\infty)$ is an interpolation space between $L_1(0,\infty) +$ $L_{\infty}(0,\infty)$ and $L_1(0,\infty) \cap L_{\infty}(0,\infty)$ if and only if p=2.

PROBLEM 4. Let 1 and <math>1/p + 1/p' = 1. Can Orlicz spaces $L_p(0, \infty) + L_{p'}(0, \infty)$ and $L_p(0, \infty) \cap L_{p'}(0, \infty)$ be obtained by the Kmethod from $L_1(0,\infty) + L_{\infty}(0,\infty)$ and $L_1(0,\infty) \cap L_{\infty}(0,\infty)$?

In the next example we apply Theorem 3 to Orlicz spaces.

EXAMPLE 4. Let $M(u)/u^2$ be a monotone function on R_+ and let $N^{-1}(u) = uM^{-1}(1/u)$ for $u \in R_+$, where M^{-1} , N^{-1} are the right continuous inverses of the Orlicz functions M and N, respectively. Then the Orlicz spaces $L_M + L_N$ and $L_M \cap L_N$ are interpolation spaces between $L_1 + L_\infty$ and $L_1 \cap L_\infty$.

Proof. It is sufficient to prove that if $\varphi(t) = tM^{-1}(1/t)$ then we have $\varphi(L_1, L_\infty) = L_M$. Indeed, if $x \in L_M$ and $\int M(|x|/\lambda) dt \leq 1$, then for $y = M(|x|/\lambda)$ holds $|x| \leq \lambda M^{-1}(M(|x|/\lambda)) = \lambda \varphi(y, 1)$. Since $||y||_{L_1} \leq 1$, it follows that $x \in \varphi(L_1, L_\infty)$. Assume conversely that $|x| \leq \lambda \varphi(|x_0|, |x_1|)$, where $||x_0||_{L_1} \leq 1$ and $||x_1||_{L_{\infty}} \leq 1$. Then

$$M(|x|/\lambda) \leq M(\varphi(|x_0|, |x_1|)) \leq M(\varphi(|x_0|, 1)) = M(M^{-1}(|x_0|)) \leq |x_0|.$$

Hence, $\int M(|x|/\lambda) dt \leq \int |x_0| dt = ||x_0||_{L_1} \leq 1$ and we conclude that $x \in L_M$. Moreover,

$$\begin{split} \|x\|_{\varphi(L_{1},L_{\infty})} &= \inf\{\lambda > 0: \, |x| \leq \lambda \varphi(|x_{0}|, \, |x_{1}|); \, \|x_{0}\|_{L_{1}} \leq 1, \, \|x_{1}\|_{L_{\infty}} \leq 1\} \\ &= \inf\{\lambda > 0: \, |x| \leq \lambda \varphi(|x_{0}|, \, 1), \, \|x_{0}\|_{L_{1}} \leq 1\} \\ &= \inf\{\lambda > 0: \, |x| \leq \lambda M^{-1}(|x_{0}|), \, \|x_{0}\|_{L_{1}} \leq 1\} \\ &= \inf\{\lambda > 0: \, M(|x|/\lambda) \leq |x_{0}|, \, \|x_{0}\|_{L_{1}} \leq 1\} \\ &= \inf\{\lambda > 0: \, \|M(|x|/\lambda)\|_{L_{1}} \leq 1\} = \|x\|_{L_{M}}. \end{split}$$

Since $\varphi^*(L_1, L_\infty) = L_N$, Theorem 3 now implies that $L_M + L_N$ and $L_M \cap L_N$ are interpolation spaces between $L_1 + L_\infty$ and $L_1 \cap L_\infty$.

Clearly, for some M, $L_M(0, \infty) + L'_M(0, \infty)$ and $L_M(0, \infty) \cap L'_M(0, \infty)$ are not interpolation spaces between $L_1(0, \infty) + L_{\infty}(0, \infty)$ and $L_1(0, \infty) \cap$ $L_{\infty}(0, \infty)$. Namely, for $L_{\mathcal{M}}(0, \infty) = L_2(0, \infty) \cap L_3(0, \infty)$ condition (9) does not hold.

There arises Problem 5 of describing all symmetric spaces that are interpolation spaces between $L_1(0, \infty) + L_{\infty}(0, \infty)$ and $L_1(0, \infty) \cap L_{\infty}(0, \infty)$. The answer to this question is open. Ovčinnikov proved in [12] that not all interpolation spaces can be obtain by the K-method.

References

- 1. N. ARONSZAJN AND E. GAGLIARDO, Interpolation spaces and interpolation methods, Ann. Mat. Pura Appl. 68 (1965), 51-118.
- 2. J. BERGH AND J. LÖFSTRÖM, "Interpolation Spaces," Springer-Verlag, New York/Berlin. 1976.
- 3. JU. A. BRUDNYI AND N. JA. KRUGLJAK, "Real Interpolation Functors," Jaroslavi, 1981. [Russian]
- A. P. CALDERÓN, Intermediate spaces and interpolation. the complex method. Studia Math. 24 (1964), 113-190.
- J. GUSTAVSSON, A function parameter in connection with interpolation of Banach spaces, Math. Scand. 42 (1978), 289–305.
- S. G. KREIN, JU. I. PETUNIN, AND E. M. SEMENOV, "Interpolation of Linear Operators," Amer. Math. Soc., R. I., 1982. [Russian edition, Moscow, 1978]
- J. LINDENSTRAUSS AND L. TZAFRIRI, "Classical Banach Spaces. II. Function Spaces," Springer-Verlag, New York/Berlin, 1979.
- G. JA. LOZANOVSKIĬ, On some Banach lattices, IV, Sibirsk. Math. Ž. 14 (1973), 140–155. [Russian]
- 9. L. MALIGRANDA, Indices and interpolation, preprint No. 274, Institute of Mathematics, Polish Academy of Sciences, Warsaw, 1983 (*Dissertationes Math. (Rozprawy Mat.)*, in press).
- 10. L. MALIGRANDA, The K-functional for symmetric spaces, in "Conference on Interpolation Spaces and Allied Topics in Analysis, Lund, Aug. 29-Sept. 1, 1983" (Lecture Notes in Mathematics, in press).
- V. I. ΟνζιΝΝΙΚΟΥ, Interpolation theorems resulting from an inequality of Grothendieck, Funktsional. Anal. i Prilozhen. 10(1976), 45-54. [Russian]
- V. I. OVČINNIKOV, On estimates of interpolation orbits, Mat. Sb. 115 (1981), 642–652. [Russian]
- 13. I. JA. ŠNEIBERG, Spectral properties of linear operators in interpolation families of Banach spaces, *Mat. Issled.* 9 (1974), 214–229. [Russian]
- 14. A. C. ZAANEN, "Integration," North-Holland, Amsterdam, 1967.