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1. INTRODUCTION

We recall some notations from interpolation theory.
A pair A = (A o, Ad of Banach spaces is called a Banach couple if Ao and

A I are both continuously imbedded in some Hausdorff topological vector
space V.

For a Banach couple A = (A o, Ad we can form the sum 1:'(A) = Ao+ AI
and the intersection LI (A) = A on A I' They are both Banach spaces, in the
natural norms Ilallr(;I)=K(I,a;A) and IlallL1(.4)=max(llaIIAo,llaIIAJ,
respectively (whenever possible we suppress the "unnecessary" .4, writing 1:'
and LI), where

K(t, a) == K(t, a;.4) = inf{ Ilaoll .10 + t Ilalll AI: ao E Ao, a l E AI' a = ao+ad

(1 )

for any positive number t.
A Banach space A is called an intermediate space between A o and A I (or

with respect to A) if LI(A) cAe 1:'(.4) with continuous inclusions.
We denote by L(.4) the Banach space of all linear operators

T: 1:'(A) --+ 1:'(.4) such that the restriction of T to the space Ai is a bounded
operator from Ai into Ai' i = 0, 1, with the norm

II Til L(.4) = max( II Til Ao ~ .10' II Til AI ~ AI)'

An intermediate space A is called an interpolation space between A o and
Al (or with respect to .4) if in addition every linear operator from L(A)
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maps A into itself. The set of all interpolation spaces between Ao and Ai.
will be denoted by I(A o, Ad.

The closed graph theorem implies that a mapping T: A -> A is bounded
linear, and that there exists a positive constant C such that

IITIIA~A~ CIITIIL(.4j (2l

for any TE L(.4) (see [6, p. 20]).
Clearly, A o+ A [ and A o n A 1 are interpolation spaces between A o and

AI, and the constant C in (2) is equal to 1.
The plan of tl].e paper is as follows:
In Section 2 we give a short proof of the Aronszajn-Gagliardo theorem,

giving necessary and sufficient conditions for a Banach couple of spaces A o
and A 1 to be interpolation spaces between A o+ A 1 and A o n A [. The
method of proof is similar to that of Aronszajn and Gagliardo. The main
difference lies in the consequent use of the K-functional (briefly proved
Proposition 1 instead of Lemma lOX of Aronszajn and Gagliardo).

Applications of the real method and the Calderon-Lozanovskii construc
tion to interpolation of the sum and the intersection are given in Section 3
and 4.

In Section 5, the above results are applied to the important class of sym
metric function spaces, in particular to Lebesgue, Lorentz. and Orlicz
spaces. For example, Lp(O, CfJ) is an interpolation space between
L 1(0, w)+Lx(O, CfJ) and L[(O, oo)nLx(O, oJ) if and only if p=2.

Conventions. Two Banach spaces A and B are considered as equal
(A = B) whenever .1= B as sets and their norms are equivalent. The
equivalence a~b means that coa~b~c[a for some positive constants Co

and Ct.

2. A SHORT PROOF OF ARONSZAJN-GAGLIARDO THEOREM

For an intermediate space A with respect to it we denote by .1° the
closure of A(A) in A, and by AX the closure of A in ..[(.4). The following
result is well known (see [1, Theorem 7.V]): if A E I(A o, A J then A must
satisfy one of the four conditions

A=Ao+A 1 , A ocAc.4g=A o+A.y,
---x

Al cAcAf =A8+A[, AonA j cAcAonA 1 •

In particular, if A o n A [ is closed in .1 0 and A 1 then I(A o, AI) =
{A o+ A I' A o, AI' A on A d and such a pair A = (A o, AI) is called trivial.

The key result to our discussion in this section is the following:
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PROPOSITION 1. Let A be an intermediate space between Ao and A 1> and
let a E 1:. Suppose that there exists a sequence {an} c LI such that

and for some c>O. (3)

Then there exists a sequence {Tn} of operators of rank 1 such that

n

and lim sup II Tnall A~ c lim K(t, a; .4). (4)
n~"x. (-I"N

Proof Let tn- I = II anll AI. Consider the linear operators Tnx = anfn(x),
where 1" are bounded linear functionals on I with f,,(a) = K(tn, a) and
Ifn(x)1 ~ K(tn, x). The existence of such functionals follows from the
Hahn-Banach theorem. If xEA i , by (3)

i = 0, 1. Hence, by (3)

lim sup II Tnall A= lim sup Ilanll A If,,(a)1 = lim sup Ilanll AK(tn , a)

~ clim sup K(tn, a) = c lim K(t, a)
n ---+ OC, t~ CD

and the proof is complete.
Note that if LI is a non-closed subspace in Al and LI cAe Ao, then con

dition (3) holds.

PROPOSITION 2. If AooF I, then the set 1 0 = {a E I: lim H oc K(t, a;
.4) < r:IJ} is a first category subset of I.

Proof First we shall prove that

(5)

for all r > 0, where A r= {a E I: SUPt>o K(t, a) ~ r} and So(r) =
{aEA o: IlaIIAo~r}.

If aESo(r)"' then there exist anEAo such that supllanllAo~r and
limn~CD Ila-anIII=O. We have K(t, a)=limn~CD K(t, an)~ IlanllAo~r for
all t > O. Hence a EAr. Let a E Ar and B > O. We can find a decomposition
a=aOn+a ln such that aonEA o, alnEA I and

II aOn II Ao + n II a In II A I ~ K( n, a) + B ~ r + B.
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Ilaonil Ao ~ K(n, a) + e~ r + e.

Thus, a E ne>o So(r +e{ = So(r)'". Since Ao with the norm
Iiall ,10 = lim h 00 K(t, a) (this is the Minkowski functional of the set SoO {)

- --E --,
is a Banach space and A o= Uf:;'~ 1 So(n) and So(nr is a nowhere dense set
in E, we get our conclusion.

The final result of this section is the Aronszajn-Gagliardo theorem.

THEOREM 1. Suppose that A o"# A and Al "# A (i.e., A o "# A and A o"# L).

(a) If A is a non-closed subspace in A I' [hen Al _ d, I( E, L1) (i = 0, 1).

(b) If A is closed in A o but not in A I' then ALE I(E, A) tf and only if L1
is dense in A 1

(c) If A is closed in both Ao and A I' then Ao, A 1 ~ I(l:, L1).

Proof (a) Suppose that AI_iEI(E, A). On account of the assumption
there exists a sequence {an} c A such that II an II Ll = 1, II an II A, ---+ O. It follows
that Ilanil Ll = 1, [lanllE ---+ 0, and Ilanll AI-l = 1. Applying Proposition 1 to the
couple (A, E) and the space A = A 1- i' we obtain that for any a E A 1- i

C 1 Iiall Al-
l
~ lim K(t, a; A, I).
l~X

Hence Ai_icJ=AonA 1 ; this means that AI_icAi • Since AicA i we
have E c Ai in contradiction to Proposition 2.

(b) Since Af=Ag+AI=A+AI=A I, it follows that Al is a closed
subspace of E. The closed subspaces of E from I(E, A) are only E and
JE = A? Hence ALE [(E, A) if and only if A is dense in A l'

(c) In this case I(E, A) = {E, A }.

3. THE K-METHOD FOR THE SUM AND THE INTERSECTION

Let !J denote the set of all positive functions qJ on R + = (0, 00) such that
both qJ(t) and tcpOlt) are non-decreasing, i.e., <p(s) ~ max(l, sl£) cp(t) for all
s, t E R +. !J contains all concave functions on R +. On !J we define the
involution by cp *(t) = tcp( lit). A function cp in !J is said to belong to ;JjJ + 

if min(l, lit) scp(t) ---+°as t ---+ 0, 00, where scp(t) = supu>o(cp(ut)/cp{u)).
Let cp E f!} and p = 00 or cp E q> + - and 1~ p < 00. We then define the
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real interpolation space Aep,p = (A o, A dep,p as the space of all a E '[(A) such
that

= sup
O<t<,x

a = ((aJ (K(t, a; A)) p dt) lip

II Ilep.p Jo cp(t) t'

K(r, a; A)

cp(r )

l~p<O'J

p= 00

(6)

is finite; it is a Banach space. If cp(t) = te(O ~ e ~ 1) we write, in short,
A e.p and II II e,p' See [5, 2J for details.

If CPo, CPI E;JJ and p = 00 or if CPo, CPI E;JJ + - and 1~ p < (f), then

and

(cf.[3, p. 169J).

PROPOSITION 3. (a) If cp(t)/-fl is a non-increasing function then

('[(A), LI(A))ep.p = Aep.p + Aep',p.

(b) If cp(t)/Jr is a non-decreasing fimction then

('[(A), LI("4))ep.p = Acp,p n A 4J .,p.

(c) Ifcp=cp* then (,[(A),LI(A))ep,p=Aep,p.

Proof We have K(t,a;,[,LI)=llaII E if t~l, and K(t,a;,[,LI)::::;
K(t, a; A) + tK(t -I, a; A) if 0 < t < 1 (see [10, Theorem 3J).

Assume that 1~ P < 00 and cp(t)/..jt is non-increasing. Then

a p ::::;j,I(K(t,a;.4)+tK(t-l,a;A))Pdt+lall fX_1_ dt
II Ilep,p '0 cp(t) tiE 1 cp(t)P t

::::; (1 (K(t, a; .4)) pdt + j'aJ (K(t, a; A))P dt + a C
Jo cp(t) t 1 tcp(l/t) t II liE ep

(I( K(t,a;.4) )Pdt
::::; Jo max(cp(t), cp~(t)) (

fa:: ( K(t, a; A) )P dt
+ 1 max(cp(r), cp*(t)) (+ Cep Ilail E

Applying (7) we have

(.E, LI )ep,p = Amax(ep,ep'),P = Aep.p + Aep',p.
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The proofs for the remaining cases are analogous to the above and
therefore omitted.

COROLLARY 1 (cf. [10]).

(I(A), L1(A))e.p=Ae.p+A 1 _ e,p,

= .4e ,p nAt_e.!',

o:(e:(!
!:(e:(1.

THEOREM 2. If cp(f)/-Vt is a monofone function on R+ or cp = cp*, then
Acp.p+A,p'.p and ,4cp,pnAcp',p are interpolation spaces between I(A) and
L1l-4).

Proof It is an immediate consequence of Proposition 3, of the equality
(I, ,,1 )cp,p = (LI, I)cp',p, and of the definition of the real interpolation
method.

PROBLEM 1. Let 0 < e < 1 and 1:( p, q:( r:£. Under which conditions
on e, p and q, A e.p+.4 1 _ 8 ,,, and Ae,pnA 1 _ e." are interpolation spaces
between I(A) and LI(A)?

Theorem 2 gives an affirmative answer for p = q and any e.

4. CALDERON-LoZANOVSKII CONSTRUCTION
FOR THE SUM AND THE INTERSECTION

Let (Q, I, fJ.) be a complete (J-finite measure space and let us denote by
L°= LO(Q, I, fJ.) the space of all equivalence classes of .u-measurable real
valued functions, equipped with the topology of convergence in measure on
fJ.-finite sets. We will say tht a Banach space X is a Banach function space
(on (Q, I, fJ.)) if Xis a Banach subspace of LO satisfying the property that if
XEOX and )'EOLo are such that ly(t)I:( IX(f)l, fJ.-a.e. on Q, then YEOX and
II )'11 x:( Ilxll x' Note that if X o and XI 'are any two Banach function spaces
(on (Q, I, fJ.)) then X = (Xo, XI) forms a Banach couple.

Let X = (Xo, Xl) be a couple of Banach function spaces and let ({J EO iJ.
We will consider cp as a function on R+ x R+ putting cp(s, t)=scp(t!s). We
denote by cp(X) = ({J(Xo, XI) the Calderon-Lozanovskif space of all x EO L J

such that for some Xi EO Xi' Ilxill x,:( 1, i = 0, 1, and for some ). >x: holds
Ixl:( ;·cp(lxol. Ixtl) fJ.-a.e. We put Ilxllcp(¥l = inf)..

Note that ({J(X) is a Banach function space (with equivalent norm) as
well as an intermediate space with respect to X. If in particular we take
((J(t) = fe, 0 < e < 1, we obtain, in this way, the spaces Xb" eXf introduced
by Calderon [4]. The properties of cp(X) have been studied in detail by

6-1-047'1·.1
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Lozanovskii [8]. OvCinnikov in [11] showed that if cp(X) = cp(X)" then
cp(X) is an interpolation space with respect to X. Analogically we define
cp*(X) = cp*(Xo, Xd, where cp*(s, t) = scp*(t/s) = tcp(s/t) and cp E&1.

PROPOSITION 4. (a) If cp(t)/J! is a non-increasing function then
cp(I(X), LI(X)) = cp(X) + cp*(X).

(b) If cp(t)/J! is a non-decreasing function then cp(I(X),A(X))=
cp(X) 11 cp*(X).

(c) If cp = cp* then cp(I(X), LI(X») = cp(X).

Proof First, we note that if XiEXi, i=O, 1, then min(lxol, Ixll)ELI(X)
and max(lxol, Ixll) EI(X). Moreover, Ilmin(lxol, Ixll )11.1:::; max(llxoll xo '
IlxlllxJ and Ilmax(lxol, IX1J)11Ir:::; Ilxoll xo + Ilxlll x!. Let us denote Xq>=
cp(I(X), A(X». Let us first show that qr(X) 11 cp*(X) c X rp: Let Ixl :::; cp( IYol,
IY11) and Ixl:::;cp*tlzol,lztl)=cp(lzll,lzol) where IIYillx,:::;l, lid x,:::; 1,
i= 0,1. Then

Ixi :::;min{cp(IYol, IY11), CP(IZII, IZol)}

:::;min{cp(max(IYol, IZ11), Ihl), cp(max(IYol, IZII)), IZol)}

= cp(max(1 Yol, IZll), min(IY11, IZol »).

Hence Ilxllx~:::;2max(llxllrp(x), Ilxllrp*(x)' Second, if cp(t)/J! is non
decreasing, then X q> C cp( X) 11 cp *(X). Indeed, since cp(t)/Jt is non
decreasing, we have cp(s,t):::;cp(t,max(s,t)) for all s,tER+. For every
XEXrp, there exist Xi E X;, YEA(X) such that Ixi :::;cp(lxo+xll, lyl). Then

Ixi :::;cp(lxol, IYI)+cp(lxll, Iyl)

:::;cp(max{lxol, lyl}, lyl)+cp(lyl,max{lxll, Iyl})

and

From the first inequality it follows that x E cp(X) and from the second
x E cp*(X). Third,

Xq> C cp(X) + cp*(X).

This follows directly from the inequality

cp(lxO+xll, IYI):::;cp(lxol, lyl)+cp(lxll, Iyl)·

Fourth, if cp(t)/J! is non-increasing, then cp(X) + cp*(X)cXrp. In fact,
since cp(t)/J! is non-increasing, it follows that cp(s, t):::;cp(max{s, t},
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min{s,t}) for all s,tER+. Let x=xo+x\, where XoEcp(X) and
x IE cp*(X). There exist Yo, Zo E Xo and YI' Z I E XI such that Ixo!:( cpr IYol,
IYII), Ixll:( cp*(lzol, IZII) = cp(lzll, IZol)· Then

Ixl:( IXol + Ixll :((IYol, IYI[)+cp(lzll, 1':::01)

:( cp(max{IYol, IYII}, min{IYol, IYII))

+ cp(max {I':::ol, 1.7 11}, min {I':::ol, 1.7 d})

and we conclude that x E X q>' Part (c) can be proved in a similar way. Thus
our proposition is proved.

COROLLARY 2 (Semenov~Sneiberg; see [13, Theorem 3J).

(Xo+ X\)I-e(XOnX1t = X6-eXr + X~Xi-e,

= X6 - eXf n X~ Xi - e,

From OvCinnikov's interpolation theorem and Proposition 4 we get:

THEOREM 3. Let cp(I, ,1) = cp(I, ,1)". If cp{t)/yt is a monotone function
on R+ or cp=cp*, then cp(X)+cp*(X) and cp(X)ncp*(X) are interpolation
spaces between I(X) and ,1(X).

Corollary 2 and Theorem 3 suggest the following problems:

PROBLEM 2. Does the result of type of Corollary 2 hold for the complex
interpolation method and any Banach spaces?

PROBLEM 3. Is the assumption cp(I, ,1) = q;(I, ,1 )" necessary III

Theorem 3?

5. CONCRETE EXAMPLES

Let R + = (0, <Xj) be equipped with Lebesgue measure. A Banach
function space E = E(O, CX)) is said to be a symmetric space (on R + ) if x E E
and Y E L0 and l.vl is equimeasurable with lxi, then y E E and II yil E = Ilx\[ E'

Any non-trivial symmetric space E is intermediate (not necessarily inter
polation) between L I and L w ' The fundamental function cp = cp E of a sym
metric space Eon (0, CX) ) is defined for t > °as q; E\t) = i[ 1{0,1)11 E' where 1to,ll

is the characteristic function of the interval (0, t).
The sum I(E) and the intersection ,1(E) of two symmetric spaces Eo, £1

are also symmetric spaces. and

(8 )



50 LEeH MALIGRANDA

If L [ n L 00 is dense in a symmetric space E, then E is minimal, i.e., E does
not contain any non-trivial closed symmetric subspace. If E = E", then E is
a maximal symmetric space, i.e., E is not a proper closed subspace of a
some symmetric space. Comprehensive information about symmetric
spaces can be found in books [6, 7].

Let Eo, E[, and E be symmetric spaces on (0, CX)) with the fundamental
functions CPo, cp [, and cp, respectively. Put

We first describe a necessary condition for the interpolation of symmetric
spaces. For a more general result, see [9].

Consider the family of linear operators {Ts.,} from E into E defined by

(s, t>O).

Then

IITs"xII E= Is-[ f: x(v) dVII11(0,tlIIE

=s-[ILoo

x(v) l(O,s)(V)dvl cp(t)

:;:;s-[ Ilxil E 111(O,5)II
E

, cp(t)

cp( t)
= cp(s) Ilxil E

with equality for X= 1(0.5)' Hence, IIT5AE~E=cp(t)/cp(s). From the above
and (2) we have a necessary condition for interpolation of symmetric
spaces. If E is an interpolation space between Eo and E[ then there exists a
positive constant C such that the following inequality

holds.

'is, t>O. (9)

THEOREM 4. Let Eo =1= Eon E[ and E[ =l=EonE[. If both Eo and E[ are
separable or Eo =E~ and E [=E~ or CPO[ (R + ) =R + , then Eo and E [ are not
interpolation spaces between Eo + E[ and Eo n E[.

Proof (1 0
) If both Eo and E [ are separable, then Eo n E [ is non

closed in Eo and E[. Hence, by Theorem l(a) we have Eo, E[ rf- I(J:, L1).
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(2°) If Ei=E;', i=O, 1, then both Eo and E I are non-closed III

Eo + E I' Hence Eo n E I is non-closed in Eo and E I' Theorem 1(a) implies
that Eo, E I ¢:. 1(1:, LI).

(3') Assume that Eo E 1(1:, LI). Since equality (8) holds if follows
from (9) that

{
minO, q>1O(t)) max(l, q>1O(t)))

1~ Cmax. , r
mm(1, q>1O(S)) max(1, q>1O(S))j

for all s,t>O. Taking Sn and tn such that q>1O(Sn)-+oo and lplO(t,,)-+O as
n -+x we thus have a contradiction. The proof for E[ is similar.

NO\v, we solve a question posed by E. M. Semenov showing that there
exists a pair of symmetric spaces (Eo, E[) on (O,JJ) such that
Eo=/=EonE[, E 1=/=EonE[, and E I is an interpolation space between
Eo+E[ and EonE I •

EXAMPLE 1. Let both Eland E 3 be non-separable symmetric spaces on
(0, x'), for example: non-separable Orlicz spaces L M and L,y or non
separable Orlicz and Marcinkiewicz spaces L',{ and M( q», respectively. We
denote by E? (i = 2, 3) either the closure of Lin L x in E, or a subspace of
E i with absolutely continuous norm. Suppose that Eg n E~ is not equal to
{O} or Eg, or E 1 n E~. Put Eo = E 2 n E~, E [ = Eg, Then Eo n E I = Eg n ~ is
closed in Eo and it is dense in E I • By Theorem l(b) we have that
E 1 E 1(Eo+ Ell Eo nEd.

Let us finally give some examples of the scope of our results.
Note that Theorems 2 and 3 actually yield:

EXAMPLE 2. If 1~ p, q ~ ('f) and l/p + liP' = 1, then Lpq(O, eX)) +
Lp'q(O, 00), Lpq(O, ('f)) n Lpq(O, 00) and Lp(O, YJ) + Lp'(O, Cf.)), Lp(O, 'X) n
LI'(O, u::,) are interpolation spaces between L1(0,x)+L)')(0, ,Xl) and
L I (0, X) ) n Lx(O,'iJ).

From Theorem 3 and (9) we get the following consequence.

EXAMPLE 3. Let 1~ Po ~ P, q ~ PI ~ 00. The following conditions are
equivalent:

(i) Lp(O,'iJ) + Lq(O, 00) E 1(Lpo(0, 00) + LpJO,X)) Loo(O,'iJ) n
Lpl(O, x)),

(ii) Lp(O, 00) n Lq(O, CfJ) E 1(Lpo(0,x,) + Lpl(O, 00), Lpo(O, ,x;) n
Lpl(O, 'iJ )),

(iii) l/p+ l/q= l/po+ l/PI'
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Proof Implication (i) or (ii) = (iii) follows from (9). Now we will show
the implication (iii) = (i) and (ii).

Define e by lip = (1 - e)/po + elpl' Then llq = elpo + (1 - e)lpl'
Since L~o- eL~ = L p and L':oL~I-e = L q , by Theorem 3 the implication

holds.
In particular, Lp(O, 00) is an interpolation space between Ll(O, 00) +

Loc(O, 00) and Ll(O, 00) n Loo(O, 00) if and only if p = 2.

PROBLEM 4. Let 1 < p < 00 and lip + lip' = 1. Can Orlicz spaces
Lp(O, 00) + Lp'(O, 00) and Lp(O, 00 ) n Lp'(O, 00) be obtained by the K
method from Ll(O, oo)+Loo(O, 00) and Ll(O, oo)nLoc(O, oo)?

In the next example we apply Theorem 3 to Orlicz spaces.

EXAMPLE 4. Let M(u)/u2 be a monotone function on R + and let
N- l(u)=uM- l(l/u) for uER+, where M- l, N- l are the right con
tinuous inverses of the Orlicz functions M and N, respectively. Then the
Orlicz spaces L M+ L Nand L Mn L N are interpolation spaces between
L l +Loo and LinLey:,.

Proof It is sufficient to prove that if cp(t)=tM- l(llt) then we have
cp(L l , Loo)=L M· Indeed, if xEL M and JM(lxI/2)dt~l, then for
y=M(lxI/2) holds Ixl~2M-l(M(lxI/2))=2cp(y,I). Since IlyIILl~l, it
follows that XEcp(L l , L oo )' Assume conversely that Ixl~2cp(lxol,lxll),

where IlxolI LI ~ 1 and Ilxllk" ~ 1. Then

Hence, JM(lxI/2) dt ~JIXol dt = Ilxoll Ll ~ 1 and we conclude that x ELM'
Moreover,

Ilxll ",(Ll,L",) = inf{A > 0: Ixi ~ 2cp(lxol, Ixll); Ilxoll Lt ~ 1, IIxl lI L", ~ 1}

= inf{A > 0: Ixl ~ 2cp( IXol, 1), Ilxoll Ll ~ 1}

= inf{A > 0: Ixl ~ 2M- l
( IXol), Ilxoll Ll ~ 1}

= inf{A > 0: M(lxI/2) ~ IXol, Ilxoll Ll ~ I}

=inf{A.>O: IIM(lxI/2)IILI ~ 1} = II xIIL'f"

Since cp*(L l' L oo )= L N' Theorem 3 now implies that L M+ L Nand
L'v[ n L N are interpolation spaces between L l + Ley:, and L l n L oo .

Clearly, for some M, L M(O, (0) + L ~1(0, (0) and L M(O, 00) n L~(O, (0)
are not interpolation spaces between Ll(O, (0) + Ley:,(O, (0) and Ll(O, 00) n
Loo(O, 00). Namely, for L M(O, 00) = L 2(0, 00) n L 3(0, 00) condition (9) does
not hold.
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There arises Problem 5 of describing all symmetric spaces that are inter
polation spaces between Lt(O,Xl)+L",(O,:x,) and L](O, cc)nLx(O,'lJ).
The answer to this question is open. OvCinnikov proved in [12] that not
all interpolation spaces can be obtain by the K-method.
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