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1. INTRODUCTION

We recall some notations from interpolation theory.
A pair A = (A o, Ad of Banach spaces is called a Banach couple if Ao and

A I are both continuously imbedded in some Hausdorff topological vector
space V.

For a Banach couple A = (A o, Ad we can form the sum 1:'(A) = Ao+ AI
and the intersection LI (A) = A on A I' They are both Banach spaces, in the
natural norms Ilallr(;I)=K(I,a;A) and IlallL1(.4)=max(llaIIAo,llaIIAJ,
respectively (whenever possible we suppress the "unnecessary" .4, writing 1:'
and LI), where

K(t, a) == K(t, a;.4) = inf{ Ilaoll .10 + t Ilalll AI: ao E Ao, a l E AI' a = ao+ad

(1 )

for any positive number t.
A Banach space A is called an intermediate space between A o and A I (or

with respect to A) if LI(A) cAe 1:'(.4) with continuous inclusions.
We denote by L(.4) the Banach space of all linear operators

T: 1:'(A) --+ 1:'(.4) such that the restriction of T to the space Ai is a bounded
operator from Ai into Ai' i = 0, 1, with the norm

II Til L(.4) = max( II Til Ao ~ .10' II Til AI ~ AI)'

An intermediate space A is called an interpolation space between A o and
Al (or with respect to .4) if in addition every linear operator from L(A)
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maps A into itself. The set of all interpolation spaces between Ao and Ai.
will be denoted by I(A o, Ad.

The closed graph theorem implies that a mapping T: A -> A is bounded
linear, and that there exists a positive constant C such that

IITIIA~A~ CIITIIL(.4j (2l

for any TE L(.4) (see [6, p. 20]).
Clearly, A o+ A [ and A o n A 1 are interpolation spaces between A o and

AI, and the constant C in (2) is equal to 1.
The plan of tl].e paper is as follows:
In Section 2 we give a short proof of the Aronszajn-Gagliardo theorem,

giving necessary and sufficient conditions for a Banach couple of spaces A o
and A 1 to be interpolation spaces between A o+ A 1 and A o n A [. The
method of proof is similar to that of Aronszajn and Gagliardo. The main
difference lies in the consequent use of the K-functional (briefly proved
Proposition 1 instead of Lemma lOX of Aronszajn and Gagliardo).

Applications of the real method and the Calderon-Lozanovskii construc­
tion to interpolation of the sum and the intersection are given in Section 3
and 4.

In Section 5, the above results are applied to the important class of sym­
metric function spaces, in particular to Lebesgue, Lorentz. and Orlicz
spaces. For example, Lp(O, CfJ) is an interpolation space between
L 1(0, w)+Lx(O, CfJ) and L[(O, oo)nLx(O, oJ) if and only if p=2.

Conventions. Two Banach spaces A and B are considered as equal
(A = B) whenever .1= B as sets and their norms are equivalent. The
equivalence a~b means that coa~b~c[a for some positive constants Co

and Ct.

2. A SHORT PROOF OF ARONSZAJN-GAGLIARDO THEOREM

For an intermediate space A with respect to it we denote by .1° the
closure of A(A) in A, and by AX the closure of A in ..[(.4). The following
result is well known (see [1, Theorem 7.V]): if A E I(A o, A J then A must
satisfy one of the four conditions

A=Ao+A 1 , A ocAc.4g=A o+A.y,
---x

Al cAcAf =A8+A[, AonA j cAcAonA 1 •

In particular, if A o n A [ is closed in .1 0 and A 1 then I(A o, AI) =
{A o+ A I' A o, AI' A on A d and such a pair A = (A o, AI) is called trivial.

The key result to our discussion in this section is the following:
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PROPOSITION 1. Let A be an intermediate space between Ao and A 1> and
let a E 1:. Suppose that there exists a sequence {an} c LI such that

and for some c>O. (3)

Then there exists a sequence {Tn} of operators of rank 1 such that

n

and lim sup II Tnall A~ c lim K(t, a; .4). (4)
n~"x. (-I"N

Proof Let tn- I = II anll AI. Consider the linear operators Tnx = anfn(x),
where 1" are bounded linear functionals on I with f,,(a) = K(tn, a) and
Ifn(x)1 ~ K(tn, x). The existence of such functionals follows from the
Hahn-Banach theorem. If xEA i , by (3)

i = 0, 1. Hence, by (3)

lim sup II Tnall A= lim sup Ilanll A If,,(a)1 = lim sup Ilanll AK(tn , a)

~ clim sup K(tn, a) = c lim K(t, a)
n ---+ OC, t~ CD

and the proof is complete.
Note that if LI is a non-closed subspace in Al and LI cAe Ao, then con­

dition (3) holds.

PROPOSITION 2. If AooF I, then the set 1 0 = {a E I: lim H oc K(t, a;
.4) < r:IJ} is a first category subset of I.

Proof First we shall prove that

(5)

for all r > 0, where A r= {a E I: SUPt>o K(t, a) ~ r} and So(r) =
{aEA o: IlaIIAo~r}.

If aESo(r)"' then there exist anEAo such that supllanllAo~r and
limn~CD Ila-anIII=O. We have K(t, a)=limn~CD K(t, an)~ IlanllAo~r for
all t > O. Hence a EAr. Let a E Ar and B > O. We can find a decomposition
a=aOn+a ln such that aonEA o, alnEA I and

II aOn II Ao + n II a In II A I ~ K( n, a) + B ~ r + B.
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Ilaonil Ao ~ K(n, a) + e~ r + e.

Thus, a E ne>o So(r +e{ = So(r)'". Since Ao with the norm
Iiall ,10 = lim h 00 K(t, a) (this is the Minkowski functional of the set SoO {)

- --E --,
is a Banach space and A o= Uf:;'~ 1 So(n) and So(nr is a nowhere dense set
in E, we get our conclusion.

The final result of this section is the Aronszajn-Gagliardo theorem.

THEOREM 1. Suppose that A o"# A and Al "# A (i.e., A o "# A and A o"# L).

(a) If A is a non-closed subspace in A I' [hen Al _ d, I( E, L1) (i = 0, 1).

(b) If A is closed in A o but not in A I' then ALE I(E, A) tf and only if L1
is dense in A 1

(c) If A is closed in both Ao and A I' then Ao, A 1 ~ I(l:, L1).

Proof (a) Suppose that AI_iEI(E, A). On account of the assumption
there exists a sequence {an} c A such that II an II Ll = 1, II an II A, ---+ O. It follows
that Ilanil Ll = 1, [lanllE ---+ 0, and Ilanll AI-l = 1. Applying Proposition 1 to the
couple (A, E) and the space A = A 1- i' we obtain that for any a E A 1- i

C 1 Iiall Al-
l
~ lim K(t, a; A, I).
l~X

Hence Ai_icJ=AonA 1 ; this means that AI_icAi • Since AicA i we
have E c Ai in contradiction to Proposition 2.

(b) Since Af=Ag+AI=A+AI=A I, it follows that Al is a closed
subspace of E. The closed subspaces of E from I(E, A) are only E and
JE = A? Hence ALE [(E, A) if and only if A is dense in A l'

(c) In this case I(E, A) = {E, A }.

3. THE K-METHOD FOR THE SUM AND THE INTERSECTION

Let !J denote the set of all positive functions qJ on R + = (0, 00) such that
both qJ(t) and tcpOlt) are non-decreasing, i.e., <p(s) ~ max(l, sl£) cp(t) for all
s, t E R +. !J contains all concave functions on R +. On !J we define the
involution by cp *(t) = tcp( lit). A function cp in !J is said to belong to ;JjJ + ­

if min(l, lit) scp(t) ---+°as t ---+ 0, 00, where scp(t) = supu>o(cp(ut)/cp{u)).
Let cp E f!} and p = 00 or cp E q> + - and 1~ p < 00. We then define the
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real interpolation space Aep,p = (A o, A dep,p as the space of all a E '[(A) such
that

= sup
O<t<,x

a = ((aJ (K(t, a; A)) p dt) lip

II Ilep.p Jo cp(t) t'

K(r, a; A)

cp(r )

l~p<O'J

p= 00

(6)

is finite; it is a Banach space. If cp(t) = te(O ~ e ~ 1) we write, in short,
A e.p and II II e,p' See [5, 2J for details.

If CPo, CPI E;JJ and p = 00 or if CPo, CPI E;JJ + - and 1~ p < (f), then

and

(cf.[3, p. 169J).

PROPOSITION 3. (a) If cp(t)/-fl is a non-increasing function then

('[(A), LI(A))ep.p = Aep.p + Aep',p.

(b) If cp(t)/Jr is a non-decreasing fimction then

('[(A), LI("4))ep.p = Acp,p n A 4J .,p.

(c) Ifcp=cp* then (,[(A),LI(A))ep,p=Aep,p.

Proof We have K(t,a;,[,LI)=llaII E if t~l, and K(t,a;,[,LI)::::;
K(t, a; A) + tK(t -I, a; A) if 0 < t < 1 (see [10, Theorem 3J).

Assume that 1~ P < 00 and cp(t)/..jt is non-increasing. Then

a p ::::;j,I(K(t,a;.4)+tK(t-l,a;A))Pdt+lall fX_1_ dt
II Ilep,p '0 cp(t) tiE 1 cp(t)P t

::::; (1 (K(t, a; .4)) pdt + j'aJ (K(t, a; A))P dt + a C
Jo cp(t) t 1 tcp(l/t) t II liE ep

(I( K(t,a;.4) )Pdt
::::; Jo max(cp(t), cp~(t)) (

fa:: ( K(t, a; A) )P dt
+ 1 max(cp(r), cp*(t)) (+ Cep Ilail E

Applying (7) we have

(.E, LI )ep,p = Amax(ep,ep'),P = Aep.p + Aep',p.
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The proofs for the remaining cases are analogous to the above and
therefore omitted.

COROLLARY 1 (cf. [10]).

(I(A), L1(A))e.p=Ae.p+A 1 _ e,p,

= .4e ,p nAt_e.!',

o:(e:(!
!:(e:(1.

THEOREM 2. If cp(f)/-Vt is a monofone function on R+ or cp = cp*, then
Acp.p+A,p'.p and ,4cp,pnAcp',p are interpolation spaces between I(A) and
L1l-4).

Proof It is an immediate consequence of Proposition 3, of the equality
(I, ,,1 )cp,p = (LI, I)cp',p, and of the definition of the real interpolation
method.

PROBLEM 1. Let 0 < e < 1 and 1:( p, q:( r:£. Under which conditions
on e, p and q, A e.p+.4 1 _ 8 ,,, and Ae,pnA 1 _ e." are interpolation spaces
between I(A) and LI(A)?

Theorem 2 gives an affirmative answer for p = q and any e.

4. CALDERON-LoZANOVSKII CONSTRUCTION
FOR THE SUM AND THE INTERSECTION

Let (Q, I, fJ.) be a complete (J-finite measure space and let us denote by
L°= LO(Q, I, fJ.) the space of all equivalence classes of .u-measurable real
valued functions, equipped with the topology of convergence in measure on
fJ.-finite sets. We will say tht a Banach space X is a Banach function space
(on (Q, I, fJ.)) if Xis a Banach subspace of LO satisfying the property that if
XEOX and )'EOLo are such that ly(t)I:( IX(f)l, fJ.-a.e. on Q, then YEOX and
II )'11 x:( Ilxll x' Note that if X o and XI 'are any two Banach function spaces
(on (Q, I, fJ.)) then X = (Xo, XI) forms a Banach couple.

Let X = (Xo, Xl) be a couple of Banach function spaces and let ({J EO iJ.
We will consider cp as a function on R+ x R+ putting cp(s, t)=scp(t!s). We
denote by cp(X) = ({J(Xo, XI) the Calderon-Lozanovskif space of all x EO L J

such that for some Xi EO Xi' Ilxill x,:( 1, i = 0, 1, and for some ). >x: holds
Ixl:( ;·cp(lxol. Ixtl) fJ.-a.e. We put Ilxllcp(¥l = inf)..

Note that ({J(X) is a Banach function space (with equivalent norm) as
well as an intermediate space with respect to X. If in particular we take
((J(t) = fe, 0 < e < 1, we obtain, in this way, the spaces Xb" eXf introduced
by Calderon [4]. The properties of cp(X) have been studied in detail by

6-1-047'1·.1
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Lozanovskii [8]. OvCinnikov in [11] showed that if cp(X) = cp(X)" then
cp(X) is an interpolation space with respect to X. Analogically we define
cp*(X) = cp*(Xo, Xd, where cp*(s, t) = scp*(t/s) = tcp(s/t) and cp E&1.

PROPOSITION 4. (a) If cp(t)/J! is a non-increasing function then
cp(I(X), LI(X)) = cp(X) + cp*(X).

(b) If cp(t)/J! is a non-decreasing function then cp(I(X),A(X))=
cp(X) 11 cp*(X).

(c) If cp = cp* then cp(I(X), LI(X») = cp(X).

Proof First, we note that if XiEXi, i=O, 1, then min(lxol, Ixll)ELI(X)
and max(lxol, Ixll) EI(X). Moreover, Ilmin(lxol, Ixll )11.1:::; max(llxoll xo '
IlxlllxJ and Ilmax(lxol, IX1J)11Ir:::; Ilxoll xo + Ilxlll x!. Let us denote Xq>=
cp(I(X), A(X». Let us first show that qr(X) 11 cp*(X) c X rp: Let Ixl :::; cp( IYol,
IY11) and Ixl:::;cp*tlzol,lztl)=cp(lzll,lzol) where IIYillx,:::;l, lid x,:::; 1,
i= 0,1. Then

Ixi :::;min{cp(IYol, IY11), CP(IZII, IZol)}

:::;min{cp(max(IYol, IZ11), Ihl), cp(max(IYol, IZII)), IZol)}

= cp(max(1 Yol, IZll), min(IY11, IZol »).

Hence Ilxllx~:::;2max(llxllrp(x), Ilxllrp*(x)' Second, if cp(t)/J! is non­
decreasing, then X q> C cp( X) 11 cp *(X). Indeed, since cp(t)/Jt is non­
decreasing, we have cp(s,t):::;cp(t,max(s,t)) for all s,tER+. For every
XEXrp, there exist Xi E X;, YEA(X) such that Ixi :::;cp(lxo+xll, lyl). Then

Ixi :::;cp(lxol, IYI)+cp(lxll, Iyl)

:::;cp(max{lxol, lyl}, lyl)+cp(lyl,max{lxll, Iyl})

and

From the first inequality it follows that x E cp(X) and from the second
x E cp*(X). Third,

Xq> C cp(X) + cp*(X).

This follows directly from the inequality

cp(lxO+xll, IYI):::;cp(lxol, lyl)+cp(lxll, Iyl)·

Fourth, if cp(t)/J! is non-increasing, then cp(X) + cp*(X)cXrp. In fact,
since cp(t)/J! is non-increasing, it follows that cp(s, t):::;cp(max{s, t},
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min{s,t}) for all s,tER+. Let x=xo+x\, where XoEcp(X) and
x IE cp*(X). There exist Yo, Zo E Xo and YI' Z I E XI such that Ixo!:( cpr IYol,
IYII), Ixll:( cp*(lzol, IZII) = cp(lzll, IZol)· Then

Ixl:( IXol + Ixll :((IYol, IYI[)+cp(lzll, 1':::01)

:( cp(max{IYol, IYII}, min{IYol, IYII))

+ cp(max {I':::ol, 1.7 11}, min {I':::ol, 1.7 d})

and we conclude that x E X q>' Part (c) can be proved in a similar way. Thus
our proposition is proved.

COROLLARY 2 (Semenov~Sneiberg; see [13, Theorem 3J).

(Xo+ X\)I-e(XOnX1t = X6-eXr + X~Xi-e,

= X6 - eXf n X~ Xi - e,

From OvCinnikov's interpolation theorem and Proposition 4 we get:

THEOREM 3. Let cp(I, ,1) = cp(I, ,1)". If cp{t)/yt is a monotone function
on R+ or cp=cp*, then cp(X)+cp*(X) and cp(X)ncp*(X) are interpolation
spaces between I(X) and ,1(X).

Corollary 2 and Theorem 3 suggest the following problems:

PROBLEM 2. Does the result of type of Corollary 2 hold for the complex
interpolation method and any Banach spaces?

PROBLEM 3. Is the assumption cp(I, ,1) = q;(I, ,1 )" necessary III

Theorem 3?

5. CONCRETE EXAMPLES

Let R + = (0, <Xj) be equipped with Lebesgue measure. A Banach
function space E = E(O, CX)) is said to be a symmetric space (on R + ) if x E E
and Y E L0 and l.vl is equimeasurable with lxi, then y E E and II yil E = Ilx\[ E'

Any non-trivial symmetric space E is intermediate (not necessarily inter­
polation) between L I and L w ' The fundamental function cp = cp E of a sym­
metric space Eon (0, CX) ) is defined for t > °as q; E\t) = i[ 1{0,1)11 E' where 1to,ll

is the characteristic function of the interval (0, t).
The sum I(E) and the intersection ,1(E) of two symmetric spaces Eo, £1

are also symmetric spaces. and

(8 )
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If L [ n L 00 is dense in a symmetric space E, then E is minimal, i.e., E does
not contain any non-trivial closed symmetric subspace. If E = E", then E is
a maximal symmetric space, i.e., E is not a proper closed subspace of a
some symmetric space. Comprehensive information about symmetric
spaces can be found in books [6, 7].

Let Eo, E[, and E be symmetric spaces on (0, CX)) with the fundamental
functions CPo, cp [, and cp, respectively. Put

We first describe a necessary condition for the interpolation of symmetric
spaces. For a more general result, see [9].

Consider the family of linear operators {Ts.,} from E into E defined by

(s, t>O).

Then

IITs"xII E= Is-[ f: x(v) dVII11(0,tlIIE

=s-[ILoo

x(v) l(O,s)(V)dvl cp(t)

:;:;s-[ Ilxil E 111(O,5)II
E

, cp(t)

cp( t)
= cp(s) Ilxil E

with equality for X= 1(0.5)' Hence, IIT5AE~E=cp(t)/cp(s). From the above
and (2) we have a necessary condition for interpolation of symmetric
spaces. If E is an interpolation space between Eo and E[ then there exists a
positive constant C such that the following inequality

holds.

'is, t>O. (9)

THEOREM 4. Let Eo =1= Eon E[ and E[ =l=EonE[. If both Eo and E[ are
separable or Eo =E~ and E [=E~ or CPO[ (R + ) =R + , then Eo and E [ are not
interpolation spaces between Eo + E[ and Eo n E[.

Proof (1 0
) If both Eo and E [ are separable, then Eo n E [ is non­

closed in Eo and E[. Hence, by Theorem l(a) we have Eo, E[ rf- I(J:, L1).
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(2°) If Ei=E;', i=O, 1, then both Eo and E I are non-closed III

Eo + E I' Hence Eo n E I is non-closed in Eo and E I' Theorem 1(a) implies
that Eo, E I ¢:. 1(1:, LI).

(3') Assume that Eo E 1(1:, LI). Since equality (8) holds if follows
from (9) that

{
minO, q>1O(t)) max(l, q>1O(t)))

1~ Cmax. , r
mm(1, q>1O(S)) max(1, q>1O(S))j

for all s,t>O. Taking Sn and tn such that q>1O(Sn)-+oo and lplO(t,,)-+O as
n -+x we thus have a contradiction. The proof for E[ is similar.

NO\v, we solve a question posed by E. M. Semenov showing that there
exists a pair of symmetric spaces (Eo, E[) on (O,JJ) such that
Eo=/=EonE[, E 1=/=EonE[, and E I is an interpolation space between
Eo+E[ and EonE I •

EXAMPLE 1. Let both Eland E 3 be non-separable symmetric spaces on
(0, x'), for example: non-separable Orlicz spaces L M and L,y or non­
separable Orlicz and Marcinkiewicz spaces L',{ and M( q», respectively. We
denote by E? (i = 2, 3) either the closure of Lin L x in E, or a subspace of
E i with absolutely continuous norm. Suppose that Eg n E~ is not equal to
{O} or Eg, or E 1 n E~. Put Eo = E 2 n E~, E [ = Eg, Then Eo n E I = Eg n ~ is
closed in Eo and it is dense in E I • By Theorem l(b) we have that
E 1 E 1(Eo+ Ell Eo nEd.

Let us finally give some examples of the scope of our results.
Note that Theorems 2 and 3 actually yield:

EXAMPLE 2. If 1~ p, q ~ ('f) and l/p + liP' = 1, then Lpq(O, eX)) +
Lp'q(O, 00), Lpq(O, ('f)) n Lpq(O, 00) and Lp(O, YJ) + Lp'(O, Cf.)), Lp(O, 'X) n
LI'(O, u::,) are interpolation spaces between L1(0,x)+L)')(0, ,Xl) and
L I (0, X) ) n Lx(O,'iJ).

From Theorem 3 and (9) we get the following consequence.

EXAMPLE 3. Let 1~ Po ~ P, q ~ PI ~ 00. The following conditions are
equivalent:

(i) Lp(O,'iJ) + Lq(O, 00) E 1(Lpo(0, 00) + LpJO,X)) Loo(O,'iJ) n
Lpl(O, x)),

(ii) Lp(O, 00) n Lq(O, CfJ) E 1(Lpo(0,x,) + Lpl(O, 00), Lpo(O, ,x;) n
Lpl(O, 'iJ )),

(iii) l/p+ l/q= l/po+ l/PI'
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Proof Implication (i) or (ii) = (iii) follows from (9). Now we will show
the implication (iii) = (i) and (ii).

Define e by lip = (1 - e)/po + elpl' Then llq = elpo + (1 - e)lpl'
Since L~o- eL~ = L p and L':oL~I-e = L q , by Theorem 3 the implication

holds.
In particular, Lp(O, 00) is an interpolation space between Ll(O, 00) +

Loc(O, 00) and Ll(O, 00) n Loo(O, 00) if and only if p = 2.

PROBLEM 4. Let 1 < p < 00 and lip + lip' = 1. Can Orlicz spaces
Lp(O, 00) + Lp'(O, 00) and Lp(O, 00 ) n Lp'(O, 00) be obtained by the K­
method from Ll(O, oo)+Loo(O, 00) and Ll(O, oo)nLoc(O, oo)?

In the next example we apply Theorem 3 to Orlicz spaces.

EXAMPLE 4. Let M(u)/u2 be a monotone function on R + and let
N- l(u)=uM- l(l/u) for uER+, where M- l, N- l are the right con­
tinuous inverses of the Orlicz functions M and N, respectively. Then the
Orlicz spaces L M+ L Nand L Mn L N are interpolation spaces between
L l +Loo and LinLey:,.

Proof It is sufficient to prove that if cp(t)=tM- l(llt) then we have
cp(L l , Loo)=L M· Indeed, if xEL M and JM(lxI/2)dt~l, then for
y=M(lxI/2) holds Ixl~2M-l(M(lxI/2))=2cp(y,I). Since IlyIILl~l, it
follows that XEcp(L l , L oo )' Assume conversely that Ixl~2cp(lxol,lxll),

where IlxolI LI ~ 1 and Ilxllk" ~ 1. Then

Hence, JM(lxI/2) dt ~JIXol dt = Ilxoll Ll ~ 1 and we conclude that x ELM'
Moreover,

Ilxll ",(Ll,L",) = inf{A > 0: Ixi ~ 2cp(lxol, Ixll); Ilxoll Lt ~ 1, IIxl lI L", ~ 1}

= inf{A > 0: Ixl ~ 2cp( IXol, 1), Ilxoll Ll ~ 1}

= inf{A > 0: Ixl ~ 2M- l
( IXol), Ilxoll Ll ~ 1}

= inf{A > 0: M(lxI/2) ~ IXol, Ilxoll Ll ~ I}

=inf{A.>O: IIM(lxI/2)IILI ~ 1} = II xIIL'f"

Since cp*(L l' L oo )= L N' Theorem 3 now implies that L M+ L Nand
L'v[ n L N are interpolation spaces between L l + Ley:, and L l n L oo .

Clearly, for some M, L M(O, (0) + L ~1(0, (0) and L M(O, 00) n L~(O, (0)
are not interpolation spaces between Ll(O, (0) + Ley:,(O, (0) and Ll(O, 00) n
Loo(O, 00). Namely, for L M(O, 00) = L 2(0, 00) n L 3(0, 00) condition (9) does
not hold.
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There arises Problem 5 of describing all symmetric spaces that are inter­
polation spaces between Lt(O,Xl)+L",(O,:x,) and L](O, cc)nLx(O,'lJ).
The answer to this question is open. OvCinnikov proved in [12] that not
all interpolation spaces can be obtain by the K-method.
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