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We study intermediate Banach spaces 4 which are or are not interpolation
spaces between Ao+ A4, and 4gn4,. T 1986 Academic Press, Inc.

1. INTRODUCTION

We recall some notations from interpolation theory.

A pair A =(A4,, A,) of Banach spaces is called a Banach couple if A, and
A, are both continuously imbedded in some Hausdorff topological vector
space V.

For a Banach couple A4 = (A4,, 4,) we can form the sum X(A)=A,+ A,
and the intersection A(4)= A, A,. They are both Banach spaces, in the
natural norms |afl 55 =K(1,a;4) and ”aHA(Z)=maX(”a_”AO= lall 4,),
respectively (whenever possible we suppress the “unnecessary” 4, writing X
and 4), where

K(t, a)=K(t, a; A) = inf{ laoll 4o+ tlaill 4: ap€ Ag, a1 €A}, a=ap+a;}
(1)

for any positive number ¢.

A Banach space A is called an intermediate space between A, and 4, (or
with respect to A) if 4(4) = A < X(A) with continuous inclusions.

We denote by L(A) the Banach space of all linear operators
T: X(A) — X(A) such that the restriction of T to the space A4, is a bounded

operator from A, into 4;, i=0, 1, with the norm

T ) =max(N T 4y o> 1T 4y~ a,)-

An intermediate space A is called an interpolation space between A, and
A, (or with respect to A) if in addition every linear operator from L(A)
42
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maps A into itself. The set of all interpolation spaces between A, and 4,
will be denoted by I(A4,, 4,).

The closed graph theorem implies that a mapping T: A — 4 is bounded
linear, and that there exists a positive constant C such that

ITl 4o a<CIT) s

=

for any Te L(A) (see [6, p. 20]).

Clearly, 4,+ A, and A,n A4, are interpolation spaces between 4, and
A, and the constant C in (2) is equal to 1.

The plan of the paper is as follows:

In Section 2 we give a short proof of the Aronszajn—Gaglhardo theorem,
giving necessary and sufficient conditions for a Banach couple of spaces A,
and 4, tc be interpolation spaces between Ao+ A, and AgnA,. The
method of proof is similar to that of Aronszajn and Gagliardo. The main
difference lies in the consequent use of the K-functional (briefly proved
Proposition | instead of Lemma 10.X of Aronszajn and Gagliardo).

Applications of the real method and the Caldéron-Lozanovskii construc-
tion to interpolation of the sum and the intersection are given in Section 3
and 4.

In Section 5, the above results are applied to the important class of sym-
metric function spaces, in particular to Lebesgue, Lorentz. and Orlicz
spaces. For example, L,(0,oc) is an interpolation space between
L0, 00)+L..(0,00)and L;(0, c)n L (0, ) if and only if p=2.

Conventions. Two Banach spaces 4 and B are considered as equal
(4= B) whenever 4 =B as sets and their norms are equivalent. The
equivalence a=xb means that coa <b<c, a for some positive constants ¢,
and ¢,.

2. A SHORT PROOF OF ARONSZAIN-GAGLIARDO THEOREM

For an intermediate space A with respect to A we denote by A° the
closure of 4{4) in 4, and by A% the closure of 4 in Z(4). The following
result is well known (see [1, Theorem 7.V]): if 4el(A,, 4,) then 4 must
satisfy one of the four conditions

A:A0+A1, AOCACZ§=A0+‘4(1},
AjcAc AT =A%+ 4,, Agn A c Acd A,

In particular, if A;nA, is closed in 4, and A4, then {4y, 4,)=
{Ag+A,, Ay, 4;, Agn A} and such a pair 4= (A4,, 4,) is called trivial.
The key result to our discussion in this section is the following:
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PROPOSITION 1. Let A be an intermediaie space between Ay and A, and
let ae X. Suppose that there exists a sequence {a,} < A such that

Han”A = 17 ”an”Al - 05 and ”an”A 2 c for some ¢ >0 (3)

Then there exists a sequence {T,} of operators of rank 1 such that

sup | Tl 4y < 1 and  limsup|T,al ,=c¢ lim K(t,a; A). (4)
n— t— e

n

Proof. Let t;'=|la,| 4. Consider the linear operators 7,x=a, f,(x),
where f, are bounded linear functionals on X with f,(a)=K(t,, a) and
[ f.(x)l <K(t,, x). The existence of such functionals follows from the
Hahn—Banach theorem. If xe€ 4;, by (3)

1T, x 0|4, = lanll 4, | fu(O) < Hanll o, K (20, X) < M@yl a2, %0 4, = l1x1] 4,

i=0, 1. Hence, by (3)

lim sup ” Tna”A =lim sup ”an”A |f‘n(a)| = lim sup Han“AK(tn’ a)

H— X n— oo

= climsup K(¢,, a)=c lim K(¢, a)

n— o I— 0

and the proof is complete.
Note that if 4 is a non-closed subspace in 4, and 4 < 4 = 4, then con-
dition (3) holds.

PROPOSITION 2. If A,#ZX, then the set Ay={acX:lim, . K(t, a;
A)< o0} is a first category subset of X.

Proof. First we shall prove that

A4, =S, (5)

for all r>0, where A,={aeX:sup,.o,K(t,a)<r} and Sy(r)=
{acdy: lall 4, <1}

If aeS,(r)° then there exist a,e 4, such that sup la,ll 4 <r and
lim, , . lla—a,|>=0. We have K(1,a)=lim,_, ., K(z, a,) < |a,ll 4, <r for
all r+>0. Hence ac A,. Let ae A, and ¢>0. We can find a decomposition
a=aq, + a,, such that aq, € 4y, a,,€ A, and

laonll 4y +nllai.llq < Kn, a)+e<r+e.
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It follows that

r+e
Ha_aOan.'gHaln“(ﬂg’—z_’o’ n—>

l@onll 4o < K(n, a) +e<r+e.

Thus, aeN,.oSe(r+ s)z = SO(r)Z. Since A, with the norm
lall z,=1lim, , , K(t, a) (this is the Minlgrowski functrional of the set Sy(! )E}-
is a Banach space and A, = J>_, So{n)” and Sy(n)” is a nowhere dense set

in 2, we get our conclusion.
The final result of this section is the Aronszajn—Gagliardo theorem.

THEOREM 1. Suppose that Ay# A4 and A, # A4 (ie, Ag# A and A, # 2}

(a) If 4 is a non-closed subspace in A,, then A, _;¢ (2, 4) (i=0,1).

(b) If4isclosed in Ay but not in Ay, then A, € (X, A} if and only if 4
is dense in A,

(¢} If 4 is closed in both Ay and A,, then Ay, A, ¢ (X, 4).

Proof. (a) Suppose that 4, _,e (X, A4). On account of the assumption
there exists a sequence {a,} < 4 such that |la,|,=1, [a,],— 0. It follows
that |la,ll,=1, |a,ls—0. and |la,| ,,_,= 1. Applying Proposition I to the
couple (4, X) and the space 4 =4, _,, we obtain that for any ae 4, _;

€ IIaIIAl‘,Ztlim K(t,a; 4, 2).

Hence 4, ,cd=A4,nA,; this means that 4, ,c A4, Since 4,c 4, we

have 2 < j ; in contradiction to Proposition 2.

(b) Since A =A3+ A4, =4+ A,=A,, it follows that 4, is a closed
subspace of X. The closed subspaces of 2 from I(X, 4} are only X2 and
A% = AY. Hence A, € I(Z, 4) if and only if 4 is dense in 4,.

(c) In this case (X, 4)={Z, 4}.

3. Tae K-METHOD FOR THE SUM AND THE INTERSECTION

Let 2 denote the set of all positive functions ¢ on R, = (0, o) such that
both ¢(t) and 7¢(1/t) are non-decreasing, i.e., @(s) <max(l, s/r) (1) for all
s,te R, . 2 contains all concave functions on R,. On 2 we define the
involution by @*(t) = te(1/t). A function ¢ in 2 is said to belong to # * ~
if min(1, 1/¢)s,(1) =0 as t— 0, oo, where s5,(1) = sup, . o(@(ut)/p(u)).

Let o2 and p=o0 or pe? "~ and 1 < p<oo. We then define the
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real interpolation space A, ,=(A4,, A1), , as the space of all ae X (A) such

that
»x (K \ ’IZ PNt
SN(CELIE

— sup K(1, a; A)
O<r<oc (P([)

(6)
s p=0C
is finite; it is a Banach space. If ¢(7)=1°(0< O < 1) we write, in short,
Ao, and | e ,. See [5,2] for details.
If ¢q, 0, €2 and p=c or if ¢y, 0, €?* ~ and 1< p< oo, then

Zmin(mo.fpl)-p:zwo,pm Awlwp and ZmaX(wo,wl),p:Awo,p+Zwl.p (7)
(cf[3, p. 169]).

ProposITION 3. (a) If (p(t)/\/t_ is a non-increasing function then
(Z(A), 4Dy = A p+ Apr,p
(b) If (p(t)/\/; is a non-decreasing function then
(2(A), A(A))g.p = Ay p O A

@*p*
(c) If o =@* then (2(A), 4(4)), ,=4,,

Proof. We have K(t,a;2, A)=|a|ls if t=1, and K(t, a; 2, )=
K(t,a; A)+tK(1 7', a; A) if 0< 1< 1 (see [10, Theorem 37).
Assume that 1 < p< oo and ¢(1)/\/t is non-increasing. Then

~1<K(t,a;A)+tK( A)> d+|\ ||zfx (l dt

lally., =

(1) o)t

<K )”dt+J'°C (K(z, a; X))”dz_l_ lals C
1\ to(1/1)
(1,a; A) 2 dt
<maX(</) (1), p*( ))> i

K(t,a; A) 7 dt
+ <max(¢ 0, o* ()) 7 1 Colals

l?

ZZ

x ”a“ max(@,p*),p*

Applying (7) we have

(Z, M, ,=A4 =A,,+ Ay,

max{(,9*),p
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The proofs for the remaining cases are analogous to the above and
therefore omitted.

Cororrary 1 (cf. [107).

(Z(Z)aA(Z))O.p:g@.p—’—glw@,p’ 0

_ 7 7 1
_‘4@,pmA176.p7 h

AN
VAN

VAN

o:
&

— N

THEOREM 2. Ifq;(r),\/t is a monotone function on R or ¢ = ¢*, then
A, +A «, and A mA «, are interpolation spaces between (A and
A(.Z ).

Proof. It is an immediate consequence of Proposition 3, of the equality
(2, 4),,=(4,2) and of the definition of the real interpolation
method.

e*.p>

PrOBLEM 1. Let 0< @ <1 and 1< p, g< . Under which conditions

on @, pand ¢, 4o pt A, _o,and Ag ,n A4, | _ o, are interpolation spaces
between X(A) and 4(A)?

Theorem 2 gives an affirmative answer for p=g¢ and any 6.

4. CALDERON-LozANOVSKH CONSTRUCTION
FOR THE SUM AND THE INTERSECTION

Let {Q, 2, u) be a complete o-finite measure space and let us denote by
L°=L°%Q, Z, n) the space of all equivalence classes of p-measurable real
valued functions, equipped with the topology of convergence in measure on
u-finite sets. We will say tht a Banach space X is a Banach function space
(on (2, 2, 1)) if X is a Banach subspace of L° satisfying the property that if
xe X and yeL® are such that | y(r)| <|\’(t) u-ae. on ©Q, then ye X and
| ¥l ¥ <{x] . Note that if X, and X, are any two Banach function spaces
{on (2, 2, u)) then X=(X,, X,) forms a Banach couple.

Let X=(X,, X,) be a couple of Banach function spaces and let ¢ €2,
We will consider ¢ as a function on R | x R, putting ¢(s, 1) =s@(1/5). We
denote by ¢(X)=o(X,, X,) the Calderon-Lozanovskii space of all xe L’
such that for some x,e X, |[x,| <1, i=0. 1, and for some 4> ¢ holds
x| < 2@(|xol. [x,]) p-ae. We put [lx| ey =inf 4

Note that ¢(X) is a Banach function space (with equivalent norm) as
well as an intermediate space with respect to X. If in particular we take
e(t)=1%9, 0< @ < |, we obtain, in this way, the spaces X} 9X? introduced
by Calderon [4]. The properties of ¢(X) have been studled in detail by

640 4714
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Lozanovskii [8]. Ovéinnikov in [11] showed that if ¢(X)=¢(X)" then
¢(X) is an interpolation space with respect to X. Analogically we define
9*(X)=9*(Xo, X,), where ¢*(s, 1) =s50*(1/s) = t¢(s/t) and p € 2.

ProrosiTiION 4. (a) If qo(t)/\/_ is a non-increasing function then
P(Z(X), 4(X)) = ¢(X) + ¢*(X).
by If (p(t)/\/ t is a non-decreasing function then o(Z(X), A(X))=
@(X) N o*(X).
(c) If ¢=0* then p(X(X), 4(X)) = ¢(X).

Proof. First, we note that if x;€ X;, /=0, 1, then min(]x,l, |x,) e 4(X)
and max(|xo[, [x;])€ Z(X). Moreover, [min(]x,l, |x;/}|l, <max(]xoll x>
(B ,\1) and |max(|xol, [x,)ll 5 < [ xoll x, + ||x1”X1 Let us denote X,=
o(2(X), 4(X)). Let us first show that @(X) N p*(X) <X, : Let |x| < (] yol,
Iyil} and |x| <@*(lzol, Iz:i1)=0(lz\l, [20]) where [iyllx <1, llziflx <1,
i=0,1. Then

|xt <min{o(] yol, | ¥11), @(Iz4}, |2ol) }
<min{@(max(| yol, 1z,]), | y11), ¢(max(| yol, z,1)), lzol)}
= (p(max(|y0|a |ZI|)3 min(|}"1|, IZO|))

Hence |x{l y, <2 max(}lx|l ,2)> Xl p=(x))- Second, if (p(t)/\/; is non-
decreasing, then X,c<o(X)n@*(X). Indeed, since (p(t)/\/; is non-
decreasing, we have ¢(s, t)<q)(t max(s, t)) for all 5,7e R, . For every
xeX,, there exist x,€ X;, ye A(X) such that |x| < eo(|x,+ ‘Cll | ])- Then

[xI < o(lxol, [¥1)+ @(lx], | ¥])
< @(max{lxol, [ ¥}, | ¥) + (| yl, max{|x|, | y|})
and
x| < @(I pl, max{|xl, | I }) + p(max{|xil, [ I}, | y])-

From the first inequality it follows that x e @(X) and from the second
x € @*(X). Third,

X, < o(X)+ o*(X).
This follows directly from the inequality

@(1x0+ x|, [ 1) < @Ixol, [ Y1)+ @(lxl, [ ¥])-

Fourth, if (p(t)/\/t- is non-increasing, then ¢(X)+ ¢*(X)<X,. In fact,
since <p(t)/\/? is non-increasing, it follows that ¢(s, 1)< @(max{s, },



INTERPOLATION BETWEEN BANACH SPACES 45

min{s, t}) for all s,reR,. Let x=x,+x,, where x,€@(X) and
x, € o*(X). There exist yq, zo€ X, and ', z, € X, such that |xo] <ol ¥l
L), [xl < @*(zols 121]) = @(lz4l, 120]). Then
Ix| < lxol + [ < (L yols |31} + (i1, izo])
< @(max{| yol, | ¥l }, min{] yol, [ ¥ })
+ @(max{|zol, |z, |3 min{ |z, =01
and we conclude that xe X,. Part (c) can be proved in a similar way. Thus

our preposition is proved.

COROLLARY 2 (Semenov-Sneiberg; see [13, Theorem 37).

(Xo+ X)) P(XenX,)?=X"°9X9 + X9X! -9, 6
=X, "X XE X178,

N
N
b —

0 <5
o

i.

-
VAN
N

From Ovceinnikov’s interpolation theorem and Proposition 4 we get:

THEOREM 3. Let (X, A)=@(Z, 4)". If (p(t),"\,/}— is a monotone function
on R, or ¢ =¢* then o(X)+ @*(X) and o(X)n @*(X) are interpolation
spaces between X(X) and A(X).

Corollary 2 and Theorem 3 suggest the following problems:

ProBLEM 2. Does the result of type of Corollary 2 hold for the complex
interpolation method and any Banach spaces?

PrOBLEM 3. Is the assumption (2, 4}=¢(Z, 4)" necessary in
Theorem 37

5. CONCRETE EXAMPLES

Let R, =(0,o0) be equipped with Lebesgue measure. A Banach
function space E = E(0, o0) is said to be a symmetric space (on R yif xe E
and ye L° and | v| is equimeasurable with |x|, then ve E and || y| .= lix|| 5.

Any non-trivial symmetric space E is intermediate (not necessarily inter-
polation) between L, and L, . The fundamental function ¢ = ¢ of a sym-
metric space E on (0, o) is defined for 1> 0 as ¢ z(1) =11l 5, where 1,
is the characteristic function of the interval (0, ).

The sum X(E) and the intersection 4(E) of two symmetric spaces £, £,
are also symmetric spaces, and

@ xp)=min(@g, @), @ a5y =max(@q, @) {8)



50 LECH MALIGRANDA

If L, L, is dense in a symmetric space E, then F is minimal, ie., E does
not contain any non-trivial closed symmetric subspace. If E= E”, then E is
a maximal symmetric space, ie., E is not a proper closed subspace of a
some symmetric space. Comprehensive information about symmetric
spaces can be found in books [6, 7].

Let E,, E,, and E be symmetric spaces on (0, oc) with the fundamental
functions ¢q, ¢,, and ¢, respectively. Put

Po{t) = @o(t)/@,(1).

We first describe a necessary condition for the interpolation of symmetric
spaces. For a more general result, see [9].
Consider the family of linear operators {7,} from F into E defined by

Tsy,x(u)=<s—1 r x(u)dv) Lio.n(u) (s, 1>0).
4]
Then

IT,xle= s~ | x(o) do

I 0.0l £

—1

=8 o(1)

J, x(0) Lios(v) do

<57 Ixl g 1 Losll 50 @(2)

0

o(s) x|l &

with equality for x=1,. Hence, | T |l z_ = ¢(t)/@(s). From the above
and (2) we have a necessary condition for interpolation of symmetric
spaces. If E is an interpolation space between E, and E, then there exists a
positive constant C such that the following inequality

o(1) {(00(’) @,(1)
22lecC ,
S CMA o) 9109)

S } Vs, 1> 0. (9)

holds.

THEOREM 4. Let Eg#EynE, and E,#E N E,. If both E, and E| are
separable or Eq=Ej and E, =FE{ or 9o;(R_.)=R , , then E, and E, are not
interpolation spaces between Ey+ E, and E,n E|.

Proof. (1°) If both E;, and E, are separable, then E,n E, is non-
closed in E, and E,. Hence, by Theorem 1(a) we have E,, E, ¢ [(Z, A).
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(27y If E,=E}, i=0,1, then both E, and £, are non-closed in
Ey+ E,. Hence Egn E, is non-closed in £, and E,. Theorem 1(a) implies
that £y, E, ¢ I(2, A4).

{3°) Assume that E,el(2, 4). Since equality (8) holds if follows
from (9) that

min(1, @(7)) max(l, ¢ ¢ )1
min(1, ¢ 4(s))’ max(1, @o(s) ))

1<Cmax{

for all 5, #>0. Taking s, and 7, such that ¢y(s,) — o and @ 5(z,) — 0 as
n— o we thus have a contradiction. The proof for E, is similar.

Now, we solve a question posed by E. M. Semenov showing that there
exists a pair of symmetric spaces (E,, Z,) on (0, ) such that
Eq#E,nE|, E\#E,nE,, and E, is an interpolation space between
Eo+ E, and E;n E|.

ExampLE 1. Let both £, and E; be non-separable symmetric spaces on
(0, oo), for example: non-separable Orlicz spaces L,, and L, or non-
separable Orlicz and Marcinkiewicz spaces L,, and M(p), respectively. We
denote by E® (i=2, 3) either the closure of L, n L in E, or a subspace of
E; with absolutely continuous norm. Suppose that £5n EY is not equal to
{0)or ES,or E;nES. Put Eg=E,NEY, E,=ES. Then E,nE, = ESn Eis
closed in F, and it is dense in E,. By Theorem 1(b) we have that
EellEg+E,.EynE)).

Let us finally give some examples of the scope of our results.
Note that Theorems 2 and 3 actually yield:

EXAMPLE 2. If 1<p, g<oo and I/p+1/p'=1, then L,(0,
L, (0, %), L,(0,0)nL,,0,00) and L,(0, 20)+L,(0, ), L,(0, c)}n
L0, oo) ar\. interpolation spaces between L0, o0)+ L (0, c) and
L0, o) L,(0, o).

From Theorem 3 and (9) we get the following consequence.

ExampPLE 3. Let 1 <p,<p, g<p,<w. The following conditions are
equivalent:

(i) L,0,00) + L,(0,00) € KL,(0, %) + L,{0, )L, (0, o) N
L, (0, x)),

(i) L,(0,00) n L(0,0) € I(L,(0,0) + L,(0,00), L0, ) N
L, (0, o)),

(iii) 1/p+1/g=1/po+ 1/p;.
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Proof. TImplication (i) or (ii) = (iii) follows from (9). Now we will show
the implication (iii) = (i) and (ii).

Define © by 1/p=(1—-0)/po+6/p,. Then 1/g=80/p,+ (1 - 0)/p,.
Since L) °Lf = L and LeL)-®=L,, by Theorem 3 the implication
holds.

In particular, L,(0, cc) is an interpolation space between L(0, oc)+
L. (0, o0) and L,(0, o) L (0, o0} if and only if p=2.

ProBIEM 4. Let 1<p<oo and I/p+1/p'=1. Can Orlicz spaces
L,(0,0)+L,(0,00) and L,0, c)nL,(0,00) be obtained by the K-
method from L,(0, )+ L, (0, o) and L,(0, o)L (0, o0)?

In the next example we apply Theorem 3 to Orlicz spaces.

ExXAMPLE 4. Let M(u)/u®> be a monotone function on R, and let
N Yuy=uM~'(1/u) for ueR,, where M~', N~! are the right con-
tinuous inverses of the Orlicz functions M and N, respectively. Then the
Orlicz spaces L,,+ L,y and L, n L, are interpolation spaces between
Li+Land L,nL_

Proof. 1t is sufficient to prove that if ¢(f)=tM ~'(1/t) then we have
o(L,,L,)=L,. Indeed, if xelL,, and jM(|x|/,1)dt< 1, then for

= M(|x|/2) holds |x|<AM ~'(M(|x|/A))=2Z@(y, 1). Since [|y|,, <1, it
follows that xe@(L,, L,). Assume conversely that |x|<Ado(|xg|, [x,]),
where |[x,] ., <1 and |x,|, <1. Then

M(1x1/2) < M(@(Ixol, 1x,1)) < M(@(Ixo], 1)) = M(M ~'(1x0])) < |xol-

Hence, | M(|x|/2) dt < | |x,| dt =|lxoll,, <1 and we conclude that xe L,,.
Moreover,

1l 2.0y = INE{A > 01 [x] < Ap(Ixql, 1115 Ixoll L, < 1, Xy, < 1}
=inf{A>0: |x| <Ap(|xo), 1), [lxoll, <1}
=inf{A>0: [x| <AM ~'(|xo|), X0l ., <1}
=inf{A>0: M(|x|/A) < |xol, lxol L, <1}
=inf{A>0: [M(|x|/A)ll ., < 1} =[xl -
Since ¢*(L,,L,)=Ly, Theorem3 now implies that L, + L, and
L,,n Ly are interpolation spaces between L, + L and L, L,
Clearly, for some M, L (0, o)+ L,,(0, 00) and L,,(0, o) L', (0, c0)
are not interpolation spaces between L (0, «o)+ L (0, oo) and L,(0, cc)

L (0, c0). Namely, for L,,(0, o0)= L,(0, co)n L;(0, co) condition (9) does
not hold.
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There arises Problem 5 of describing all symmetric spaces that are inter-
polation spaces between L,(0, oo)}+ L (0, o) and L,(0, c)n L (G, %)
The answer to this question is open. Oveinnikov proved in [12] that not
all interpolation spaces can be obtain by the K-method.
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